Skip to main content

Oncogenes in human leukemias and lymphomas

  • Chapter
Oncogenes

Part of the book series: Cancer Treatment and Research ((CTAR,volume 47))

  • 81 Accesses

Abstract

Hematologic malignancies frequently have been used as model systems in the study of tumorigenesis owing to the ease of isolating neoplastic tissue and to the wealth of knowledge on the growth and differentiation of the hematopoietic elements. Since malignancy is due to perturbations in the control of growth and differentiation, it is hoped that identifying genetic elements that induce leukemias may also point to those factors that control normal cellular functions. Proto-oncogenes represent such genetic elements; they have important functions in normal cells but can be perturbed to become cancer-causing genes. In this chapter, we will examine the role of various oncogenes in the development of human hematopoietic malignancies, and will discuss them in two groups (see table 1): oncogenes with strong associations with the human leukemias and lymphomas (seen frequently and consistently in the human disease), and those with limited associations with the human disorders (seen occasionally in humans, but whose role in leukemogenesis and lympho-magenesis is suggested by association or is certain in animal systems). Tumor-suppressor genes also appear to be important participants in the malignant progression of these hematopoietic neoplasms. However, since specific leukemia/lymphoma-suppressor genes have not been isolated, they will be discussed in a separate section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rowley JD: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 243:290–293, 1973.

    PubMed  CAS  Google Scholar 

  2. Whang-Peng J, Henderson RS, Knutsen T, Freireich EJ, Gart JJ: Cytogenetic studies in acute myelocytic leukemia with special emphasis on the occurrence of the Ph1 chromosome. Blood 36:448–457, 1970.

    PubMed  CAS  Google Scholar 

  3. Rowley JD: Ph1-positive leukaemia, including chronic myelogenous leukemia. Clin. Haematol 9(1):55–85, 1980.

    PubMed  CAS  Google Scholar 

  4. Bartram CR, de Klein A, Hagemeijer A: Translocation of the c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature 306:277–280, 1983.

    PubMed  CAS  Google Scholar 

  5. de Klein A, Geurts van Kessel A, Grosveld GC, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR: A cellular oncogene (c-abl) is translocated to the Philadelphia chromosome in chronic myelogenous leukemia. Nature 300:765–767, 1982.

    PubMed  Google Scholar 

  6. Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G: Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelogenous leukemia. Nature 306:239–242, 1983.

    PubMed  CAS  Google Scholar 

  7. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G: Phil-adelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromo-some 22. Cell 36:93–99, 1984.

    PubMed  CAS  Google Scholar 

  8. Hirosawa S, Aoki N, Matsushime H, Shibua M: Undetectable bcr-abl rearrangement in some CML patients are due to a deletion mutation in the bcr gene. Am J Hematol 28: 33–36, 1988.

    PubMed  CAS  Google Scholar 

  9. Biennerhassett GT, Furth ME, Anderson A, Burns JP, Chaganti RSK, Blick M, Talpaz M, Dev VG, Chan LC, Wiedemann LM, Greaves MF, Hagemeijer A, van der Pias D, Skuse G, Wang N, Stam K: Clinical evaluation of a DNA probe assay for the Philadelphia translocation in chronic myelogenous leukemia. Leukemia 2(10):648–657, 1988.

    Google Scholar 

  10. Morris CM, Reeve AE, Fitzgerald PH, Hollings PE, Beard ME, Heaton DC: Genomic diversity correlates with clinical variation in Ph1-negative chronic myelogenous leukemia. Nature 32:281–283, 1986.

    Google Scholar 

  11. Teyssier JR, Bartram CR, Deville J, Potion G, Pigeon F: C-abl oncogene and chromosome 22 ‘bcf’ juxtaposition in chronic myelogenous leukemia. N Engl J Med 312(21): 1393–1394, 1985.

    PubMed  CAS  Google Scholar 

  12. de Klein A, Bartram CR, Hagemeijer A, Heisterkamp N, Stam K, Groffen J, Grosveld G: The c-abl oncogene in chronic myelogenous leukemia. Hematologica 72:19–22, 1987.

    Google Scholar 

  13. Ganesan S, Rassol F, Guo AP, Young BD, Galton DAG, Goldman JM: Rearrangement of the bcr gene in Philadelphia chromosome negative chronic myelogenous leukemia. Haematology and Blood Transfusions 31:153–159, 1987.

    CAS  Google Scholar 

  14. Ezdinli EZ, Sokal JE, Crosswhite L, Sandberg AA: Philadelphia-chromosome-positive and -negative chronic myelocytic leukemia. Ann Intern Med 72:175–182, 1970.

    PubMed  CAS  Google Scholar 

  15. Kurzrock R, Blick MB, Talpaz M et al.: Rearrangement in the breakpoint cluster region and the clinical course in Philadelphia-negative chronic myelogenous leukemia. Ann Intern Med 105:673–679, 1986.

    PubMed  CAS  Google Scholar 

  16. Bartram CR, Kleihauer E, de Klein A, et al.: C-abl and bcr are rearranged in a Ph1-negative CML patient. EMBO J 4:683–686, 1985.

    PubMed  CAS  Google Scholar 

  17. Shtivelman E, Gale RP, Dreazen O, et al.: Bcr-abl RNA in patients with chronic myelogenous leukemia. Blood 69:971–973, 1987.

    PubMed  CAS  Google Scholar 

  18. Haluska FG, Finver S, Tsujimoto Y, Croce CM: The t(8;14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature 324:158–161, 1986.

    PubMed  CAS  Google Scholar 

  19. Haluska FG, Tsujimoto Y, Croce CM: Mechanisms of chromosomal translocation in B-and T-cell neoplasia. Trends Genet 3:11–15, 1987.

    CAS  Google Scholar 

  20. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G: Structural organization of the bcr gene and its role in the Ph1 translocation. Nature 315:758–761, 1985.

    PubMed  CAS  Google Scholar 

  21. Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554, 1985.

    PubMed  CAS  Google Scholar 

  22. Mes-Masson AM, McLaughlin J, Daley GQ, Paskind M, Witte ON: Overlapping cDNA clones define the complete coding region for the P210-cabl gene product associated with chronic myelogenous leukemia cells containing the Philadelphia chromosome. Proc Natl Acad Sci USA 83:9768–9772, 1986.

    PubMed  CAS  Google Scholar 

  23. Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON: Cell lines and clinical isolates derived from Ph1 positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci USA 82:1810–1814, 1985.

    PubMed  CAS  Google Scholar 

  24. Baltimore D, Shields A, Otto G, Goff S, Besmer PR, Witte O, Rosenberg N: Structure and expression of the Abelson murine leukemia virus genome and its relationship to a normal cell gene. Cold Spring Harbor Symp Quant Biol 44:849–854, 1980.

    PubMed  CAS  Google Scholar 

  25. Konopka JB, Witte ON: Activation of the abl oncogene in murine and human leukemias. Biochim Biophys Acta 823:1–17, 1985.

    PubMed  CAS  Google Scholar 

  26. Prywes R, Foulkes JG, Baltimore D: The minimum transforming region of c-abl is the segment encoding protein-tyrosine kinase. J Virol 54:114–122, 1985.

    PubMed  CAS  Google Scholar 

  27. Prywes R, Foulkes JG, Rosenberg N, Baltimore D: Sequences of the A-MuLV protein needed for fibroblast and lymphoid cell transformation. Cell 34:569–579, 1983.

    PubMed  CAS  Google Scholar 

  28. Huhn RD, Marshall R, Posner MR, Rayter SI, Foulkes JG, Frackelton AR: Cell lines and peripheral blood meukocytes derived from individuals with chronic myelogenous leukemia display virtually identical proteins phosphorylated on tyrosine residues. Proc Natl Acad Sci USA 84:4408–4412, 1987.

    PubMed  CAS  Google Scholar 

  29. Saggioro D, Ferracini R, DiRenzo MF, Naldini L, Chieco-Bianchi L, Comoglio PM: Protein phosphorylation at tyrosine residues in v-abl transformed mouse lymphocytes and fibroblasts. Int J Cancer 37:623–628, 1986.

    PubMed  CAS  Google Scholar 

  30. Frackelton AR: Characterization of phosphotyrosyl proteins in cells transformed by Abelson murine leukemia virus: use of a monoclonal antibody to phosphotyrosine. In: Feramisco L, Ozanne B, Stiles C (ed): Growth Factors and Transformation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985, pp 339–345.

    Google Scholar 

  31. Bell JC, Mahadevan LC, Colledge WH, Frackelton AR Jr, Sargent MG, Foulkes JG: Abelson-transformed fibroblasts contain nuclear phosphotyrosyl-proteins which preferentially bind to murine DNA. Nature 325:552–554.

    Google Scholar 

  32. Wanjun L, Kloetzer WS, Arlinghaus RB: A novel 53kD protein complexed with p210bcr-abl in human chronic myelogenous leukemia cells. Oncogene 2:559–566, 1988.

    Google Scholar 

  33. Konopka JB, Witte ON: Detection of abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5:3116–3123, 1985.

    PubMed  CAS  Google Scholar 

  34. Daley GO, McLaughlin J, Witte ON, Baltimore D: The CML specific p210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 237:532–535, 1987.

    PubMed  CAS  Google Scholar 

  35. Young JC, Witte ON: Selective transformations of primitive lymphoid cells by the bcr/abl oncogene expressed in long term lymphoid or myeloid cultures. Mol Cell Biol 8:4079–4087, 1988.

    PubMed  CAS  Google Scholar 

  36. Rowley JD: Clinical significance of chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Genet Cytogenet 4:111–37, 1981.

    Google Scholar 

  37. Hirosawa S, Aoki N, Shibuya M, Onozawa Y: Breakpoints in Philadelphia chromosome (Ph1)-positive leukemias. Jpn J Cancer Res 78:590–595, 1987.

    PubMed  CAS  Google Scholar 

  38. Erikson J, Griffin CA, ar-Rushdi A, et al.: Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA 83:1807–1811, 1986.

    PubMed  CAS  Google Scholar 

  39. Chen SJ, Chen Z, Grausz D, Hillion J, d’Auriol L, Flandrin G, Larsen CJ, Berger R: Molecular cloning of a 5′ segment of the genomic Ph1 gene defines a new breakpoint cluster region (bcr2) in Philadelphia positive acute leukemia. Leukemia 2(10):634–641, 1988.

    PubMed  CAS  Google Scholar 

  40. Erikson J, Griffin CA, ar-Rushdi A, Valitieri M, Hoxie J, Finon J, Emanuel BS, Rovera G, Nowell PC, Croce CM: Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia. Proc Natl Acad Sci USA 83:1807–1811, 1986.

    PubMed  CAS  Google Scholar 

  41. de Klein A, Hagemeijer A, Bartram CT, et al.: Bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood 68:1369–1375, 1986.

    PubMed  Google Scholar 

  42. Hermans A, Gow J, Selleri L, von Lindern M, Hagemeijer A, Wiedeman LM, Grosveld G: Bcr-abl oncogene activation in Philadelphia chromosome positive acute lymphoblastic leukemia. Leukemia 2(10):628–633, 1988.

    PubMed  CAS  Google Scholar 

  43. Kurzrock R, Shtalrid M, Romero R, et al.: A novel c-abl protein produce in Philadelphia-positive acute lymphoblastic leukemia. Nature 325:631–635, 1987.

    PubMed  CAS  Google Scholar 

  44. Clark SS, McLaughlin J, Crist WM, Champlin TR, Witte ON: Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1 ALL. Science 235:85–88, 1987.

    PubMed  CAS  Google Scholar 

  45. Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, Lawler SD, Groffen J, Foulkes JG, Greaves MF, Wiedemann LM: A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 325:635–637, 1987.

    PubMed  CAS  Google Scholar 

  46. Kurzrock R, Shtalrid M, Romero P, Kloetzer WS, Talpas M, Trujillo JM, Blick M, Beran M, Gutterman JU: A novel c-abl protein produce in Philadelphia-positive acute lymphoblastic leukemia. Nature 325:631–635, 1987.

    PubMed  CAS  Google Scholar 

  47. Ribeiro RC, Abromowitsch M, Raimondi SC, Murphy SB, Behm F, Williams DL: Clinical and biological hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood 70:948–953, 1987.

    PubMed  CAS  Google Scholar 

  48. Liu E, Hjelle B, Bishop JM: Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci USA 85:1952–1956, 1988.

    PubMed  CAS  Google Scholar 

  49. Hirai H, Tanaka S, Azuma M, Anrahn Y, Kobayashi Y, Fujisawa M, Okabe T, Urable A, Takaku F: Transforming genes in human leukemia cells. Blood 66:1371–1378, 1985.

    PubMed  CAS  Google Scholar 

  50. Cogswell P, Liu E: Frequency of ras mutations in chronic myelogenous leukemia. Submitted.

    Google Scholar 

  51. Janssen JWG, Steenvoorden ACM, Lyons J, Anger B, Bohlke JU, Bos JL, Seliger H, Bartram CR: Ras gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84:9228–9232, 1987.

    PubMed  CAS  Google Scholar 

  52. Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M, Mizoguchi H, Nishida J, Takaku F: A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature 327:430–432, 1987.

    PubMed  CAS  Google Scholar 

  53. Liu E, Hjelle B, Morgan R, Hecht F, Bishop JM: Mutations of the Kirsten Ras proto-oncogene in myelodysplastic syndrome. Nature 327:430–432, 1987.

    Google Scholar 

  54. Hirai H, Okada M, Mizoguchi H, Mano H, Kobayashi Y, Nishida J, Takaku F: Relationship between an activated N-ras oncogene and chromosomal abnormality during leukemic progression from myelodysplastic syndrome. Blood 71:256–258, 1988.

    PubMed  CAS  Google Scholar 

  55. Farr CJ, Saiki RK, Erlich HA, McCormick F: Analysis of ras gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85:1629–1633, 1988.

    PubMed  CAS  Google Scholar 

  56. Mills KI, Mackenzie ED, Birnie GD: The site of the breakpoint within the bcr is a prognostic factor in Philadelphia-positive CML patients. Blood 72(4): 1237–1241, 1988.

    PubMed  CAS  Google Scholar 

  57. Schaefer-Rego K, Dudek H, Popenoe D, Arlin Z, Mears JG, Bank A, Leibowitz D: CML patients in blast crisis have breakpoints localized to a specific region of the bcr. Blood 70:448–455, 1987.

    PubMed  CAS  Google Scholar 

  58. Kurzrock R, Gutterman JU, Talpaz M: The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319:990–998, 1988.

    PubMed  CAS  Google Scholar 

  59. Shtalrid M, Talpaz M, Kurzrock R, Kantarjian H, Trujillo J, Gutterman J, Yoffe G, Blick M: Analysis of bcr gene and correlation with clinical course in Ph-positive chronic myelogenous leukemia. Blood 72:485–491, 1988.

    PubMed  CAS  Google Scholar 

  60. Collins SJ: Breakpoints on chromosomes 9 and 22 in Philadelphia chromosome-positive chronic myelogenous leukemia (CML): amplification of rearranged c-abl oncogenes in CML blast crisis. J Clin Invest 78:1392–1396, 1986.

    PubMed  CAS  Google Scholar 

  61. Collins SJ, Groudine MT: Chronic myelogenous leukemia: amplification of a rearranged c-abl oncogene in both chronic phase and blast crisis. Blood 69:893–898, 1987.

    PubMed  CAS  Google Scholar 

  62. Collins SJ, Kubonishi I, Miyoshi I, Groudine M: Altered transcription of the c-abl oncogene in K-562 and other chronic myelogenous leukemia cells. Science 225:72–74, 1984.

    PubMed  CAS  Google Scholar 

  63. Collins S, Colman H, Groudine M: Expression of bcr and bcr/abl fusion transcripts in normal and leukemic cells. Mol Cell Biol 7:2870–2876, 1987.

    PubMed  CAS  Google Scholar 

  64. Konopka JB, Clark S, McLaughlin J, Nitta M, Kato Y, Strife A, Clarkson B, Witte ON: Variable expression of the translocated c-abl oncogene in Philadelphia-chromosome positive B-lymphoid cell lines from chronic myelogenous leukemia patients. Proc Natl Acad Sci USA 83:4049–4052, 1986.

    PubMed  CAS  Google Scholar 

  65. McCarthy DM, Rassool FV, Goldman JM, Graham SV, Birnie GD: Genomic alterations involving the c-myc proto-oncogene locus during the evolution of a case of chronic granulocytic leukemia. Lancet 2:1362–1365, 1984.

    PubMed  CAS  Google Scholar 

  66. Lisker R, Caras L, Mutdrinick O, Perez-Chavez F, Labardini J: Late-appearing Philadelphia chromosome in two patients with chronic myelogenous leukemia. Blood 56:812–814, 1980.

    PubMed  CAS  Google Scholar 

  67. Hayata J, Sakurai M, Kakati S, Sandberg AA: Banding studies of chronic myelocytic leukemia, including five unusual Ph1 translocations. Cancer 36:1177–1191, 1975.

    PubMed  CAS  Google Scholar 

  68. Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobsen RJ, Hansen JA: Evidence for a mutlistep pathogenesis of chronic myelogenous leukemia. Blood 58:158–163, 1981.

    PubMed  CAS  Google Scholar 

  69. Najfeld V, Seremetis S, Sanders N, Jacobson R, Aledort L, Troy K, Arlin Z, Fialkow PJ: Origin of T-lymphocytes in Philadelphia chromosome positive chronic myelogenous leukemia (abstr). Blood 66 (Suppl 1):100a, 1985.

    Google Scholar 

  70. Bartram CR, Janssen JWG, Becher R: Persistance of CML despite deletion of rearranged bcr/c-abl sequences. Haematology and Blood Transfusions 31:145–147, 1987.

    CAS  Google Scholar 

  71. Bartram CR, Janssen JW, Becher R, de Klein A, Grosveld G: Persistence of chronic myelocytic leukemia despite delegation of rearranged bcr-abl sequences in blast crisis. J Exp Med 164:1389–1396, 1986.

    PubMed  CAS  Google Scholar 

  72. Greenberg PL: The smoldering myeloid leukemic states: clinical and biological features. Blood 61:1035–1044, 1983.

    PubMed  CAS  Google Scholar 

  73. Coiffier B, Adeleine P, Viala JJ, Bryon PA, Fiere D, Gentilhomme O, Vuuan H: Dysmyelopoietic syndromes. A search for prognostic factors in 193 patients. Cancer 52:83–90, 1983.

    PubMed  CAS  Google Scholar 

  74. Mufti GJ, Stevens JR, Oscier DG, Hamlin TJ, Machin D: Myelodysplasie syndromes: a scoring system with prognostic significance. Br J Haematol 59:425–433, 1985.

    PubMed  CAS  Google Scholar 

  75. Lyons J, Janssen JWG, Bartram C, Lay ton M, Mufti GJ: Mutation of Ki-ras and N-ras oncogenes in myelodysplastic syndromes. Blood 71:1707–1712, 1988.

    PubMed  CAS  Google Scholar 

  76. Padua RA, Carter G, Hughes D, Gow J, Farr C, Oscier D, McCormick F, Jacobs A: Ras mutations in myelodysplasia detected by amplification, oligonucleotide hybridization, and transformation. Leukemia 2(8):503–510, 1988.

    PubMed  CAS  Google Scholar 

  77. Kantarjan HM, Smith TL, McCredie KB, et al.: Chronic myelogeneous leukemia: a multivariate analysis of the association of patients characteristics and survival. Blood 66:1326–35, 1985.

    Google Scholar 

  78. Pugh WC, Pearson M, Vardiman JW, Rowley JD: Philadelphia chromosome-negative chronic myelogenous leukemia: a morphological reassessment. Br J Haematol 60:457–467, 1985.

    PubMed  CAS  Google Scholar 

  79. Travis LB, Pierre RV, DeWald GW: Ph1 negative chronic granulocytic leukemia: a non-entity. Am J Clin Path 85(2):186–193, 1986.

    PubMed  CAS  Google Scholar 

  80. Gambke CA, Hall A, Moroni C: Activation of an N-ras gene in acute myeloblasts leukemia through somatic mutation in the first exon. Proc Natl Acad Sci USA 82:879–882, 1985.

    PubMed  CAS  Google Scholar 

  81. Needleman SW, Kraus MH, Srivastva SK, Levine PH, Aaronson SA: High frequency of N-ras activation in acute myelogenous leukemia. Blood 67:753–757, 1986.

    PubMed  CAS  Google Scholar 

  82. Bos JL, Toksoz D, Marshall CJ, Verlaan-de Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG, Steenvoorden ACM: Amino acid substitution at codon 13 of the N-ras oncogene in human acute myeloid leukemia. Nature 315:726–730, 1985.

    PubMed  CAS  Google Scholar 

  83. Bos JL, Verlaan-de Vries M, van der Eb AJ, Janssen JWG, Delwel R, Lowenberg B, Colly LP: Mutations in N-ras predominate in acute myeloid leukemia. Blood 69:1237–1241, 1987.

    PubMed  CAS  Google Scholar 

  84. Rodenhuis S, Bos JL, Slater RM, Behrendt H, van’t Heer M, Smets SO: Absence of oncogene amplifications and occasional activation of N-ras in lymphoblastic leukemia of childhood. Blood 67:1698–1704, 1986.

    PubMed  CAS  Google Scholar 

  85. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, Vogelstein B: Prevalence of ras mutations in human colorectal cancers. Nature 327:293–297, 1987.

    PubMed  CAS  Google Scholar 

  86. Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zanwijk N, Bos JL: Mutational activation of the K-ras oncogene; a possible pathogenic factor in adeoncarcinoma of the lung. N Engl J Med 317:929–935, 1987.

    PubMed  CAS  Google Scholar 

  87. Rochlitz CF, Scott GK, Dodson JM, Liu E, Dollbaum C, Smith HS, Benz CC: Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res, in press.

    Google Scholar 

  88. Barbacid M: Ras genes. Annu Rev Biochem 56:779–827, 1987.

    PubMed  CAS  Google Scholar 

  89. Tabin CJ, Weinberg RA: Analysis of viral and somatic activations of the cHa-ras gene. J Virol 53:260–265, 1985.

    PubMed  CAS  Google Scholar 

  90. Rein A, Keller J, Schultz AM, Holmes KL, Medicus R, Ihle JN: Infection of immune mast cells by Harvey sarcoma virus immortalization without loss of requirement for interleukin-3. Mol Cell Biol 5:2257–2264, 1985.

    PubMed  CAS  Google Scholar 

  91. Hankins WD, Scolnick EM: Harvey and Kirsten sarcoma viruses promote the growth and differentiation fo erythroid precursor cells in vitro. Cell 26:91–97, 1981.

    PubMed  CAS  Google Scholar 

  92. Pierce JH, Aaronson SA: Myeloid cell transformation by ras-containing murine sarcoma viruses. Mol Cell Biol 5(4):667–674, 1985.

    PubMed  CAS  Google Scholar 

  93. LeBeau MM, Rowley JD, Sacchi N, Watson DK, Papas TS, Diaz MO: Hu-ets-2 is trans-located to chromosome 8 in the t(8;21) in acute myelogenous leukemia. Cancer Genet Cytogenet 23:269–274, 1986.

    CAS  Google Scholar 

  94. Cole MD: The myc oncogene: its role in transformation and differantiation. Annu Rev Genet 20:361–384, 1986.

    PubMed  CAS  Google Scholar 

  95. Haluska FG, Tsujimoto Y, Croce CM: Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet 21:321–345, 1987.

    PubMed  CAS  Google Scholar 

  96. Bernard O, Cory S, Gerondakis S, Webb E, Adams JM: Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosomal translocation in B lymphoid tumors. EMBO J 2:2375–2383, 1983.

    PubMed  CAS  Google Scholar 

  97. Murphy W, Sarid J, Taub R, Vasicek T, Battey J, Lenoir G, Leder P: A translocated human c-myc oncogene is altered in a conserved coding sequence. Proc Natl Acad Sci USA 83:2939–2943, 1986.

    PubMed  CAS  Google Scholar 

  98. Rabbitts TH, Forster A, Hamlyn P, Baer R: Effect of somatic mutation within translocated c-myc genes in Burkitt’s lymphoma. Nature 309:592–597, 1984.

    PubMed  CAS  Google Scholar 

  99. Pelicci PG, Knowles DM, Magrath I, Dalla-Favera R: Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 83:2984–2988, 1986.

    PubMed  CAS  Google Scholar 

  100. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, et al.: Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 222:390–393, 1983.

    PubMed  CAS  Google Scholar 

  101. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL: The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538, 1985.

    PubMed  CAS  Google Scholar 

  102. Alexander WS, Schrader JW, Adams JM: Expression of the c-myc oncogene under control of an immunglobulin enhancer in Eμ-myc transgenic mice. Mol Cell Biol 7:1436–1444, 1987.

    PubMed  CAS  Google Scholar 

  103. Langdon WY, Harris AW, Cory S, Adams JM: The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 47:11–18, 1986.

    PubMed  CAS  Google Scholar 

  104. Cory S, Harris AW, Langdon WY, Alexander WS, Corcoran LM, Palmiter RD, Pinkert CA, Brinster RL, Adams JM: The myc oncogene and lymphoid neoplasia: from trans-locations to transgenic mice. Haematology and Blood Transfusions 31:248–251, 1987.

    CAS  Google Scholar 

  105. Harris HW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JW: The Eu-myc transgenic mouse: a model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167:353–371, 1988.

    PubMed  CAS  Google Scholar 

  106. Lombardi L, Newcomb EW, Dalla-Favera R: Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene cases the tumorigenic conversion of EBV infected human B lymphocytes. Cell 49:161–170, 1987.

    PubMed  CAS  Google Scholar 

  107. De Jong D, Voetdijk BMH, Beverstock GC, van Ommen GJB, Willemze R, Klium PM: Activation of the c-myc oncogene on a precursor B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma. N Engl J Med 318:1373–1378, 1988.

    PubMed  Google Scholar 

  108. Gauwerky CE, Hoxie J, Nowell PC, Croce CM: Pre-B cell leukemia with a t(8;14) and a t(14;18) translocation is preceded by follicular lymphoma. Oncogene 2:431–435, 1988.

    PubMed  CAS  Google Scholar 

  109. Yunis JJ, Frizzera G, Oken MM, McKenna J, Theologides A, Arnesen M: Multiple re-current genomic defects in follicular lymphoma. A possible model for cancer. N Engl J Med 316:79–84, 1987.

    PubMed  CAS  Google Scholar 

  110. Tsujimoto Y, Cossman J, Jaffe E, Croce CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1443, 1985.

    PubMed  CAS  Google Scholar 

  111. Tsujimoto Y, Bashir MM, Givol I, Cossman J, Jaffe E, Croce CM: DNA rearrangements in human follicular lymphoma can involve the 5′ or the 3′ region of the bcl-2 gene. Proc Natl Acad Sci USA 84:1329–1331, 1987.

    PubMed  CAS  Google Scholar 

  112. Galili N, Cleary ML, Sklar J: Human follicular lymphomas: identification of a second t(14;18) breakpoint cluster region. Haematology and Blood Transfusions 31:167–171, 1987.

    CAS  Google Scholar 

  113. Tsujimoto Y, Croce CM: Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 83:5214–5218, 1986.

    PubMed  CAS  Google Scholar 

  114. Cleary ML, Smith SD, Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47:19–28, 1986.

    PubMed  CAS  Google Scholar 

  115. Tsujimoto Y, Ikegaki N, Croce CM: Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. Oncogene 2:3–7, 1987.

    PubMed  CAS  Google Scholar 

  116. Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ: Expression of bcl-2 and bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 80:1512–1515, 1987.

    PubMed  CAS  Google Scholar 

  117. Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML: Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med 318:1738–1644, 1988.

    Google Scholar 

  118. Reed JC, Cuddy M, Slabiak T, Croce CM, Nowell PC: Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336:259–261, 1988.

    PubMed  CAS  Google Scholar 

  119. Lee MS, Blick MB, Trujillo JM, Butler JJ, Katz RL, McLaughlin P, Hagemeister FB, Velasquez WS, Goodacre A, Cork A, Gutterman JU, Cabanillas F: The gene located at chromosome 18 band q21 is rearranged in uncultured diffuse lymphomas as well as follicular lymphomas. Blood 70:90–95, 1987.

    PubMed  CAS  Google Scholar 

  120. Aisenberg AC, Wilkes BM, Jacobson JO: The bcl-2 gene is rearranged in many diffuse B-cell lymphomas. Blood 71:969–972, 1988.

    PubMed  CAS  Google Scholar 

  121. Weiss LM, Warnke RA, Sklar J, Cleary ML: Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317:1185–1189, 1987.

    PubMed  CAS  Google Scholar 

  122. Erikson J, Finan J, Tsujimoto Y, Nowell PC, Croce CM: The chromosome 14 breakpoint in neoplastic B cells with the t(11;14) translocation involves the immunoglobulin heavy chain locus. Proc Natl Acad Sci USA 81:4144–4148, 1984.

    PubMed  CAS  Google Scholar 

  123. Moscovici C, Samarut J, Gazzolo L, Moscovici MG: Myeloid and erythroid neoplastic response to avian defective leukemia viruses in chickens and in quail. Virology 68:1172–181, 1981.

    Google Scholar 

  124. Rosson D, Reddy EP: Mechanism of activation of the myb oncogene in myeloid leukemias. Ann NY Acad Sci 551:219–231, 1987.

    Google Scholar 

  125. Radke K, Beug H, Kornfeld S, Graf T: Transformation of botherythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell 31:643–653, 1982.

    PubMed  CAS  Google Scholar 

  126. Frykberg L, Palmieri S, Beug H, Graft T, Hayman MJ, Vennstrom B: Transforming capacities of avian erythroblastosis virus mutants deleted in their erb A or erb B oncogenes. Cell 32:227–238, 1983.

    PubMed  CAS  Google Scholar 

  127. Blick, M, Westin N, Gutterman J, Wong-staal F, Gallo R, McCredie K, Keating M, Murphy E: Oncogene expression in human leukemia. Blood 64:1234–1239, 1984.

    PubMed  CAS  Google Scholar 

  128. Evinger-Hodges MJ, Dicke KA, Cutterman JU, Blick M: Proto-oncogene expression in human normal bone marrow. Leukemia: 1:597–602, 1987.

    PubMed  CAS  Google Scholar 

  129. Slamon DJ, deKernion JB, Verma IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224:256–262, 1986.

    Google Scholar 

  130. Slamon DJ, Boone TFC, Murdock DC, Keith DE, Press MF, Larson RA, Souza LM: Studies of the human c-myb gene and its product in human acute leukemias. Science 233:347–351, 1986.

    PubMed  CAS  Google Scholar 

  131. Mavilio F, Sposi NM, Petrini M, Bottero N, Marinucci M, De Rossi G, Amadori S, Mandelli F, Peschle C: Expression of cellular oncogenes in primary cells from human acute leukemias. Proc Natl Acad Sci USA 83:4394–4398, 1986.

    PubMed  CAS  Google Scholar 

  132. Weinstein Y, Ihle JN, Lavu S, Reddy EP: Truncation of the c-myb gene by a retroviral integration in an interleukin 3-dependent myeloid leukemia cell line. Proc Natl Acad Sci USA 83:5010–5014, 1986.

    PubMed  CAS  Google Scholar 

  133. Gewirtz AM, Calabretta B: A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 242:1303–1306, 1988.

    PubMed  CAS  Google Scholar 

  134. Rothberg PG, Erisman MD, Diehl RE, Rovigatti UG, Astrin SM: Structure and expression of the oncogene c-myc in malignancies. Mol Cell Biol 4:1096–1103, 1984.

    PubMed  CAS  Google Scholar 

  135. Birnie GD, Warnock AM, Burns JH, Clark P: Expression of the myc gene locus in populations of leukocytes from leukemia patients and normal individuals. Leukemia Res 10: 515–526, 1986.

    CAS  Google Scholar 

  136. Ferrari S, Narni F, Mars W, Kaczmarek L, Venturelli D, Anderson B, Calabretta B: Expression of growth-regulated genes in human acute leukemias. Cancer Res 46:5162–5166, 1986.

    PubMed  CAS  Google Scholar 

  137. Butturini A, Shtivelman E, Canaani E, Gale RP: Oncogenes in human leukemias. Acta Haemat 78(Suppl 1):2–10, 1987.

    PubMed  Google Scholar 

  138. Pinto A, Colletta G, Del Vecchiol L, Rosati R, et al.: C-fos oncogene expression in human hematopoietic malignancies is restricted to acute leukemias with monocytic phenotype and to subsets of B cell leukemias. Blood 70:1450–1457, 1987.

    PubMed  CAS  Google Scholar 

  139. Smith LJ, McCullough EA, Benchimol S: Expression of the p53 oncogene in acute myeloblasts leukemia. J Exp Med 164:751–761, 1986.

    PubMed  CAS  Google Scholar 

  140. Shen WPV, Alfrich TH, Venta-Perez G, Franza BR, Furth ME: Expression of normal and mutant ras proteins in human acute leukemia. Oncogene 1:157–165, 1987.

    PubMed  CAS  Google Scholar 

  141. Roussel MF, Dull TJ, Rettenmier CW, Ralph P, Ullrich A, Sherr CJ: Transforming potential of the c-fms proton-oncogene (CSF-1 Receptor). Nature 325:549–552, 1987.

    PubMed  CAS  Google Scholar 

  142. Lang RA, Metcalf D, Gough NM, Dunn AR, Gonda TJ: Expression of a hematopoieitic growth factor cDNA in a factor-dependent cell line results in autonomous growth and tumorigenicity. Cell 41:677–683, 1985.

    Google Scholar 

  143. Rambaldi A, Wakamiya N, Vellenga E, Horiguchi J, Warren MK, Kufe D, Griffin JD: Expression of the macrophage colony stimulating factor and c-fms genes in human acute myeloblasts leukemia cells. J Clin Invest 81:1030–1035, 1988.

    PubMed  CAS  Google Scholar 

  144. Boehm TLJ, Hirth HP, Kornhuber B, Drahovsky D: Oncogene amplification and clonal evolution in acute leukemia. Eur J Cancer Clin Oncol 23:871–873, 1987.

    PubMed  CAS  Google Scholar 

  145. Yokota J, Tsumestugo-Yokota Y, Battiflora H, Slamon D, Cline M: Alteration of myc, myb, and rasHa proto-oncogenes in cancer are frequent and show clinical correlation. Science 231:261–2650, 1986.

    PubMed  CAS  Google Scholar 

  146. Dalla Favera R, Wong-staal F, Gallo RC: Oncogene amplification in promyelocytic leukemia cell line HL-60 and primary leukemia cells of the same patient. Nature 299:61–63, 1982.

    Google Scholar 

  147. Alitalo K, Saksela K, Wingvist R, Alitalo R, Keski-Oja J, Laiho M, Ilvonen M, Knuutila S, de la Chapelle A: Acute myelogenous leukemia with c-myc amplification and double minute chromosome. Lancet 11:1035–1038, 1985.

    Google Scholar 

  148. Diaz MO, LeBeau MM, Harden A, Rowley JD: Trisomy 8 in human haematologic neoplasia and the c-myc and c-mos oncogenes. Leukemia Res 9:1437–1442, 1985.

    CAS  Google Scholar 

  149. Papas TS, Watson DK, Sacchi N, O’Brien S, Ascione R: The cellular ets genes: molecular probes in human neoplasia. Hematologica 72(Suppl 6):6–18, 1987.

    CAS  Google Scholar 

  150. Van den Berghe H, David G, Broeckart-Van Orshoven A, Louwagie K, Verwilghen R, Casteels-Van Daele M, Eggermont E, Eeckels R: A new chromosome anomaly in acute lymphoblastic leukemia (ALL). Hum Genet 46:173–180, 1979.

    PubMed  Google Scholar 

  151. Arthur DC, Bloomfield CD, Linquist LL, Nesbit ME: Translocation 4;11 in acute lymphoblastic leukemia: clinical characteristics and prognostic significance. Blood 59:96–99, 1982.

    PubMed  CAS  Google Scholar 

  152. Diaz MO, LeBeau MM, Pitha P, Rowley JD: Interferon and c-ets-1 genes in the trans-location (9;11) (p22;q23) in human acute monocytic leukemia. Science 231:265–2657, 1986.

    PubMed  CAS  Google Scholar 

  153. Rovigatti U, Watson DK, Yunis JJ: Amplification and rearrangement of Hu-ets-1 in leukemia and lymphoma with involvement of 11q23. Science 232:398–400, 1986.

    PubMed  CAS  Google Scholar 

  154. Papas TS, Watson DK, Sacchi N, O’Brien S, Ascione R: The cellular ets genes: molecular biology and clinical amplifications in human leukemias. Cancer Invest 4:555–574, 1986.

    PubMed  CAS  Google Scholar 

  155. Goyns MH, Hann IM, Stewart J, Gegonne A, Birnie GD: The c-ets-1 proto-oncogene is rearranged in some cases of acute lymphoblastic leukemia. Br J Cancer 56:611–613, 1987.

    PubMed  CAS  Google Scholar 

  156. Woloschak KE, DeWald GW, Bahn RS, Kyle RA, Greipp PR, Ash RC: Amplification of RNA and DNA specific for erb B in unbalanced 1;7 chromosomal translocation associated with myelodysplastic syndrome. J Cell Biochem 32:23–34, 1986.

    PubMed  CAS  Google Scholar 

  157. Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC, Jenkins NA, Copeland NG: Identification of a common ecotropic viral integration site Evi-1 in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 8:301–308, 1988.

    PubMed  CAS  Google Scholar 

  158. Morishita K, Parker DS, Mucenski DML, Jenkins NA, Copeland NG, Ihle JN: Retroviral activation of a novel gene encoding a zinc finger protein i IL-3 dependent myeloid leukemia cell lines. Cell 54:831–840, 1988.

    PubMed  CAS  Google Scholar 

  159. Bitter MA, Neilly ME, LeBeau MM, Pearson MG, Rowley JD: Rearrangements of chromosome 3 involving bands 3q21 and 3q16 are associated with normal or elevated platelet counts in acute nonlymphocytic leukemia. Blood 66:1362–1370, 1985.

    PubMed  CAS  Google Scholar 

  160. Akahoshi M, Oshimi K, Mizoguchi H, Okada M, Enomoto Y, Watanabe Y: Myeloproliferative disorders terminating in acute megakaryoblastic leukemia with chromosome 3q16 abnormality. Cancer 60:2654–2661, 1987.

    PubMed  CAS  Google Scholar 

  161. Rowley JD: Chromosome abnormalities in human leukemia. Ann Intern Med 14:17–39, 1980.

    CAS  Google Scholar 

  162. Pederson-Bjergaard J, Philip P: Cytogenetic characteristics of therapy-related acute non-lymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome: correlation with clinical data for 61 consecutive cases. Br J Haematol 66:199–207, 1987.

    Google Scholar 

  163. LeBeau MM, Albain KS, Larson KS, Vardiman JW, Davis EM, Blough RR, Golomb HM, Rowley JD: Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphoblastic abnormalities of chromosomes 5 and 7. J Clin Oncol 4:325–345, 1986.

    CAS  Google Scholar 

  164. Pedersen-Bjergaard J, Janssen JWG, Lyons J, Philip P, Bartram CR: Point mutations of the ras proto-oncogenes and chromsome aberrations on acute nonlymphoblastic leukemia and preleukemia related to therapy with alkylating agents. Cancer Res 48:1812–1817, 1988.

    PubMed  CAS  Google Scholar 

  165. Huebner K, Isobe M, Croce CM, Golde DW, Kaufman SE, Gasson JC: The human gene encoding GM-CSF is at 5q21-q32, the chromosome region deleted in the 5q- abnormality. Science 230:1282–1285, 1985.

    PubMed  CAS  Google Scholar 

  166. Pettenati MJ, LeBeau MM, Lemons RS, Shima EA, kawasaki ES, Larson RA, Sherr CJ, Diaz MO, Rowley JD: Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and their involvement on the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974, 1987.

    PubMed  CAS  Google Scholar 

  167. LeBeau MM, Epstein ND, O’Brien SJ, Nienhuis AW, Yang YC, Clark SC, Rowley JD: The interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci USA 84:5913–5917, 1987.

    CAS  Google Scholar 

  168. Groffen J, Heisterkamp N, Spurr N, Dana S, Wasmuth JJ, Stephenson JR: Chromsomal localization of the human c-fms oncogene. Nucleic Acids Res 11:6331–6339, 1983.

    PubMed  CAS  Google Scholar 

  169. Nienhuis AW, Bunn HF, Turner P, Gopal TV, Nash WG, O’Brien SJ, Sherr CJ: Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q- syndrome. Cell 42:421–428, 1985.

    PubMed  CAS  Google Scholar 

  170. Verbeek JS, van Heerikhuizen J, de Pauw BE, Haanen C, Bloemers HPJ, Van de Ven WJM: A hereditary abnormal c-fms proto-oncogene in a patient with acute lymphocytic leukemia and congenital hypothyroidism. Br J Haematol 61:135–138, 1985.

    PubMed  CAS  Google Scholar 

  171. Yunis JJ, Rydell RE, Oken MM, Arnesen MA, Mayer MG, Lobell M: Refined chromo-some analysis as an independent prognostic indicator in de novo myelodysplastic syndromes. Blood 67:1721–1730, 1986.

    PubMed  CAS  Google Scholar 

  172. Kere J, Ruutu T, Lahtinen R, de la Chapelle A: Molecular characterization of chromosome 7 long arm deletions in myeloid disorders. Blood 70:1349–1353, 1987.

    PubMed  CAS  Google Scholar 

  173. Carroll WL, Morgan R, Glader BE: Childhood bone marrow monosomy 7 syndrome: a familial disorders?. J Pediatr 107:578–580, 1985.

    PubMed  CAS  Google Scholar 

  174. Larsen WE, Schimke N: Familial acute myelogenous leukemia with associated c-monosomy in two affected members. Cancer 38:841–845, 1976.

    PubMed  CAS  Google Scholar 

  175. Testa JR, Kinnealey A, Rowley JD, Golde DW, Pooter D: Deletion of the long arm of chromosome 20 (del (20) (q11)) in myeloid disorders. Blood 52:868–877, 1978.

    PubMed  CAS  Google Scholar 

  176. LeBeau MM, Westbrook CA, Diaz MO, Rowley JD: C-src is consistently conserved in the chromosomal deletion 20q observed in myeloid disorders. Proc Natl Acad Sci USA 82:6692–6696, 1985.

    CAS  Google Scholar 

  177. Quintrell N, Lebo R, Varmus H, Bishop JM, Pettenati MJ, LeBeau MM, Diaz MO, Rowley JD: Identification of a human gene (HCK) that encodes a protein-tyrosine kinase and is expressed in hematopoeitic cells. Mol Cell Biol 7:2267–2275, 1987.

    PubMed  CAS  Google Scholar 

  178. Chilcote RR, Brown E, Rowley JD: Lymphoblastic leukemia with lymphomatous features associated with abnormalities of the short arm of chromosome 9. N Engl J Med 313:286–291, 1985.

    PubMed  CAS  Google Scholar 

  179. Pollak C, Hagemeijer A: Abnormalities of the short arm of chromosome 9 with partial loss of material in hematological disorders. Leukemia 1:541–548, 1987.

    PubMed  CAS  Google Scholar 

  180. Carroll AJ, Castleberry RP, Crist WM: Lack of association between abnormalities of the chromosome 9 short arm and either ‘lymphomatous’ features or T cell phenotype in childhood acute lymphocytic leukemia. Blood 69:735–738, 1987.

    PubMed  CAS  Google Scholar 

  181. Trent JM, Olson S, Lawn RM: Chromosomal localization of human leukocyte, fibroblast, and immune interferon genes by means of in situ hybridization. Proc Natl Acad Sci USA 79:7809–7813, 1982.

    PubMed  CAS  Google Scholar 

  182. Diaz MO, Ziemin S, LeBeau MM, Pitha P, Smith SD, Chilcote RR, Rowley JD: Homozygenous deletion of the alpha and betal interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci USA 85:5259–5263, 1988.

    PubMed  CAS  Google Scholar 

  183. Moore RN, Larsen HS, Horohov DW, Rouse BT: Endogenous regulation of macrophage proliferative expansion by colony-stimulating factor-induced interferon. Science 223:178–181, 1984.

    PubMed  CAS  Google Scholar 

  184. Zullo JN, Cochran BH, Huang AS, Stiles CD: Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43: 793–800, 1985.

    PubMed  CAS  Google Scholar 

  185. Rechavi G, Katzir N, Brok-Simoni F, Holtzman F, Gurfinkel N, Givol D, Ben-Bassay I, Ramot B: A search for bcl1, bcl2, and c-myc oncogene rearrangements in chronic lymphocytic leukemia. Leukemia 3:57–60, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Liu, E. (1989). Oncogenes in human leukemias and lymphomas. In: Benz, C., Liu, E. (eds) Oncogenes. Cancer Treatment and Research, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1599-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1599-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8885-5

  • Online ISBN: 978-1-4613-1599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics