Skip to main content

Electrically Stimulated Membrane Breakdown

  • Chapter
Electrical Manipulation of Cells

Abstract

The first sign of cell exposure to electrical pulses (strength in Kilovolts per Centimeter and duration in microseconds to milliseconds) is loss of the membrane permeation barrier against ions and small molecules. These permeability changes may be rapidly reversible or irreversible depending on the intensity and the width of the electrical pulses, as well as the composition of the suspending medium. After the rapid increase of the membrane permeability, many delayed effects of the electrical stimulation are observed. These slower secondary effects include membrane fusions, membrane bleb formation, endocytotic reactions, reorganization of the cytoskeletal network, and, in severe cases, lysis of the cells. Global membrane rupture and cell death are mainly due to these secondary effects. Cell death may be prevented by following certain protocols, the most crucial of which is to balance the osmotic pressure of the cytoplasmic fluid and the extracellular medium. Experiments show that electrical stimulation introduces pores of limited sizes in the plasma membrane. These pores can be resealed without losing the cytoplasmic macromolecular contents, and most cells will survive after pore resealing. Electroporation has found many applications in molecular biology, genetic engineering, agricultural research, and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz, R., and Zimmermann, U. (1979). Reversible electric breakdown of lipid bilayer membranes: A charge-pulse relaxation study. J. Membrane Biol. 48: 181–204.

    Article  CAS  Google Scholar 

  • Blank, M., and Findl, E. (1987). Mechanistic approaches to interactions of electrical fields with living systems. Plenum Press. New York.

    Google Scholar 

  • Caffrey, M. (1989). The study of lipid phase transition kinetics by time-resolved x-ray diffraction. Ann. Rev. Biophys. Chem. 18: 159–186.

    Article  CAS  Google Scholar 

  • Chang, D. C., and Reese, T. S. (1990). Changes of membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik, L. A., Sokolov, A. V., and Budker, V. G. (1990). Electrostimulated uptake of DNA by liposomes. Biochim. Biophys. Acta. 1024:179–183.

    CAS  Google Scholar 

  • Cole, K. S. (1972). Membrane, ions and impulses. University of California Press, Berkeley.

    Google Scholar 

  • Coster, H. G. L. and Zimmermann, U. (1975). The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22: 73–90.

    Article  CAS  Google Scholar 

  • Ehrenberg, B., Farkas, D. L., Fluhler, E. N., Lojewska, Z., and Loew, L. M. (1987). Membrane potential induced by external electrical field pulses can be followed with a potentiometric dye. Biophys. J. 51: 833–837.

    Article  PubMed  CAS  Google Scholar 

  • El-Mashak, E. M., and Tsong, T. Y. (1985). Ion selectivity of temperature-induced and electric field induced pores in dipalmitoylphosphatidylcholine vesicles. Biochemistry 24: 2884–2888.

    Article  PubMed  CAS  Google Scholar 

  • Gass, G. V., and Chernomordik, L. V. (1990). Reversible large-scale deformations in the membrane of electrically-treated cells: Electroinduced bleb formation. Biochim. Biophys. Acta 1023: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Genz, A., Holzwarth, J. F., and Tsong, T. Y. (1986). The influence of cholesterol on the main phase transition of unilamellar dipalmitoylphosphatidylcholine vesicles. Biophys. J. 50: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, R. W., Leikin, S. L., Chernomordik, L. V., Pastushenko, V. F., and Sokirko, A. I., (1988). Reversible electric breakdown of lipid bilayers: Formation and evolution of pores. Biochim. Biophys. Acta 940: 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D. E. (1943). Potential impedance and rectification in membranes. J. Gen Physiol. 27: 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D., Loew, L. M. and Webb, W. W. (1986). Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys. J. 50: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Gruenewald, B., Frisch, W. and Holzwarth, J. F. (1981). The kinetics of the formation of rotational isomers in the hydrophobic tail region of phospholipid bilayers. Biochim. Biophys. Acta 641: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Hibino, M., Shigemori, M., Itoh, H., Nagayama, K., and Kinosita, K. (1991). Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59: 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.-H., Wheeldon, L., and Thompson, T. E. (1964). The properties of lipid bilayer membranes separating two aqueous phases: Formation of a membrane of simple composition. J. Mol. Biol. 8: 148–160.

    Article  PubMed  CAS  Google Scholar 

  • Ipsen, J. H., Jorgensen, K., and Mouristen, O. G. (1990). Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length increases. Biophys. J. 58: 1099–1107.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M. K., and Wagner, R. C. (1980). Introduction to Biological Membranes. John Wiley and Sons, New York.

    Google Scholar 

  • Kanehisa, M. I., and Tsong, T. Y. (1978). Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 100: 424–432.

    Article  CAS  Google Scholar 

  • Kim, P. S., and Baldwin, R. L. (1990). Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem 159: 631–660.

    Article  Google Scholar 

  • Kinosita, K., Ashikava, I., Saita, N., Yosimura, H., Itoh, H., Nagayama, K., and Ikegami, A. (1988). Electroporation of cell membranes visualized under pulsed laser fluorescence microscope. Biophys. J. 53: 1015–1019.

    Article  PubMed  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1977a). Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad. Sci. USA. 74: 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1977b). Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268: 438–441.

    Article  PubMed  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1977c). Voltage induced pore formation and hemolysis of human erythrocyte membranes. Biochim. Biophys. Acta 471: 227–242.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1978), Survival of sucrose-loaded erythrocytes in circulation. Nature 272: 258–260.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1979). Voltage-induced conductance in human erythrocyte membranes. Biochim. Biophys. Acta 554: 479–497.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S. W., and Nicholls, J. G. (1976). From Neuron to Brain. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Lee, R. C. (1990). Biophysical injury mechanisms in electrical shock victims. Proc. IEEE Eng. Med. Biol. Soc. Philadelphia. 12: 1502–1504.

    Google Scholar 

  • Liu, D.-S., Astumian, R. D., and Tsong, T. Y. (1990). Activation of Na+ and K+ pumping modes of Na,K-ATPase by an oscillating electric field. J. Biol. Chem. 265: 7260–7267.

    PubMed  CAS  Google Scholar 

  • Marszalek, P., Liu, D.-S., and Tsong, T. Y. (1990). Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 58: 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Mouneimne, Y., Tosi, R.-F., Barhoumi, R., and Nicolau, C. (1990). Electroinsertion of full length recombinant CD4 into red cell membrane. Biochim. Biophys. Acta. 1027: 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1: 841–845.

    PubMed  CAS  Google Scholar 

  • Neumann, E., Sowers, A. E., and Jordan, C. A., eds. (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York.

    Google Scholar 

  • O’Neill, R. J., and Tung, L. (1991). A cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys. J.

    Google Scholar 

  • Pliquett, V. F. (1968). Das Verhalten von oxytrichiden unter einfluss des elektrischen, felds. Z. Biologie 116: 10–22.

    CAS  Google Scholar 

  • Powell, K. T., Derrik, E. G., and Weaver, J. C. (1986). A quantitative theory of reversible electrical breakdown. Bioelectrochem. Bioenerg. 15: 243–255.

    Article  Google Scholar 

  • Rols, M.-P. and Teissie, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of phenomenon. Biophys. J. 58 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A. (1968). Effects of high electric fields in microorganisms. III. Lysis of erythrocytes and protoplasts. Biochim. Biophys. Acta. 163: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Schwan, H. P. (1983). Biophysics of the interaction of electromagnetic energy with cells and membranes. Pages 213–231. In Biological Effects and Dosimetry of Nonionizing Radiation. Grandolfo, M., Michaelson, S. M., and Rindi, A. eds., Plenum Press, New York.

    Google Scholar 

  • Serpersu, E. H., Kinosita, K. and Tsong, T. Y. (1985). Reversible and irreversible modification of membrane permeability by electric field. Biochim. Biophys. Acta. 812: 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Serpersu, E. H., and Tsong, T. Y. (1983). Stimulation of Rb+ pumping activity of Na, K-ATPase in human erythrocytes with an external electric field. J. Membrane Biol. 74: 191–201.

    Article  CAS  Google Scholar 

  • Sowers, A. E. (1986). A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J. Cell Biol. 102: 1358–1362.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E. (1988). Fusion events and nonfusion content mixing events induced in erythrocyte ghosts by an electric pulse. Biophys. J. 54: 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., and Lieber, M. L. (1986). Electropores in individual erythrocyte ghost: Diameter, lifetimes, numbers, and locations. FEBS Lett. 205: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., and Tsong, T. Y. (1980). Evidence of voltage induced channel opening in Na, K-ATPapse of human erythrocyte membranes. J. Membrane Biol. 55: 133–140.

    Article  CAS  Google Scholar 

  • Teissie, J. and Tsong, T. Y. (1981). Electric field-induced transient pores in phospholipid bilayer vesicles. Biochemistry 20: 1548–1554.

    Article  PubMed  CAS  Google Scholar 

  • Tien, H. T. (1974). Bilayer Lipid Membranes (BLM): Theory and Practice. Marcel Dekker, New York.

    Google Scholar 

  • Tsien, R. W., Hess, P., McClesky, E. W., and Rosenberg, R. L. (1987). Calcium channels: Mechanisms of selectivity, permeation, and block. Ann. Rev. Biophys. Biophys. Chem. 16: 265–290.

    Article  CAS  Google Scholar 

  • Tsong, T. Y. (1974a). Temperature jump relaxation kinetics of aqueous suspensions of phospholipids and B. subtlis membranes. Federation Proceedings 33: 1342.

    Google Scholar 

  • Tsong, T. Y. (1974b). Kinetics of the crystalline-liquid phase transition of dimyristoyl L-α-lecithin bilayers. Proc. Natl. Acad. Sci. USA 71: 2684–2688.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y. (1983). Voltage modulation of membrane permeability and energy utilization in cells. Bioscience Reports 3: 487–505.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y. (1987). Electric modification of membrane permeability for drug loading into living cells. Methods in Enzymol. 149: 248–259.

    Article  CAS  Google Scholar 

  • Tsong, T. Y. (1990a). On electroporation of cell membranes and some related phenomena. Bioelectrochem. Bioenerg. 24: 271–295.

    Article  CAS  Google Scholar 

  • Tsong, T. Y. (1990b). Electrical modulation of membrane proteins: Enforced conformational oscillations and biological energy and signal transductions. Ann. Rev. Biophys. Biophys. Chem. 19: 83–106.

    Article  CAS  Google Scholar 

  • Tsong, T. Y., Greenberg, M., and Kanehisa, M. I. (1977a). Anesthetic action on membrane lipids. Biochemistry 16: 3115–3121.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and Kanehisa, M. I. (1977b). Relaxation phenomena in aqueous dispersions of synthetic lecithins. Biochemistry 16: 2674–2680.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and Kingsley, E. (1975). Hemolysis of human erythrocyte induced by a rapid temperature jump. J. Biol. Chem. 250: 786–789.

    PubMed  CAS  Google Scholar 

  • Wong, T.-K., and Neumann, E. (1982). Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107: 584–587.

    Article  PubMed  CAS  Google Scholar 

  • Xie, T.-D., Sun, L. and Tsong, T. Y. (1990), Study of mechanisms of electric field-induced DNA transfection I. DNA entry by surface binding and diffusion through membrane pores. Biophys. J. 58: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U. (1982). Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta. 694: 227–277.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Tsong, T.Y. (1996). Electrically Stimulated Membrane Breakdown. In: Lynch, P.T., Davey, M.R. (eds) Electrical Manipulation of Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1159-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1159-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8491-8

  • Online ISBN: 978-1-4613-1159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics