Skip to main content

Many Body Effects on the Cyclotron Resonance in Electron Inversion Layers

  • Chapter
Interfaces, Quantum Wells, and Superlattices

Part of the book series: NATO ASI Series ((volume 179))

Abstract

At low temperatures, the electrons in the inversion layer of a silicon metal-oxide-semiconductor field-effect-transistor or a GaAs/AlGaAs heterojunction behave dynamically as a two dimensional electron gas.1 This leads to interesting correlation effects for a number of reasons. The reduced dimensionality typically enhances the importance of potential or interaction energies relative to the kinetic energy. Also, it is possible to vary the two-dimensional density of electrons and, hence, to vary the relative strength of the Coulomb potential. Finally, in the best devices, the scattering due to impurities is very small and can, in fact, be weaker than electron-electron scattering, making it possible to observe correlation effects experimentally. The presence of a strong perpendicular magnetic field can further enhance correlation effects because of the Landau quantization of the kinetic energy. For example, at low densities and strong magnetic fields, correlation effects give rise to the fractional quantum Hall effect.2,3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54:437 (1982).

    Article  ADS  Google Scholar 

  2. H.L. Stormer, A. Chang, D.C. Tsui, J.CM. Hwang, A.C. Gossard, and W. Wiegmann, Fractional quantization of the Hall effect, Phys. Rev. Lett. 50:1953 (1983).

    Article  ADS  Google Scholar 

  3. R.B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50:1395 (1983).

    Article  ADS  Google Scholar 

  4. W. Kohn, Cyclotron resonance and de Hass-van Alphen oscillations of an. interacting electron gas, Phys. Rev. 123:1242 (1961).

    Article  ADS  MATH  Google Scholar 

  5. J.P. Kotthaus, G. Abstreiter, and J.F. Koch, Subharmonic structure of cyclotron resonance in an inversion layer on silicon, Solid State Comm. 15:517 (1974).

    Article  ADS  Google Scholar 

  6. T. Ando, Mass enhancement and subharmonic structure of cyclotron resonance of cyclotron resonance in an interacting two-dimensional electron gas, Phys. Rev. Lett. 36:1383 (1976).

    Article  ADS  Google Scholar 

  7. C.S. Ting, S.C. Ying, and J.J. Quinn, Infrared cyclotron resonance in semiconducting surface inversion layers, Phys. Rev. Lett. 37:215 (1976);

    Article  ADS  Google Scholar 

  8. C.S. Ting, S.C. Ying, and J.J. Quinn, Theory of cyclotron resonance of interacting electrons in a semiconducting surface inversion layer, Phys. Rev. B 16:5394 (1977).

    Article  ADS  Google Scholar 

  9. K. Muro, S. Narita, S. Hiyamizu, K. Nanbu, and H. Hashimoto, Far-infrared cyclotron resonance of two-dimensional electrons in an AlGaAs/GaAs Heterojunction, Surf. Sci. 113:321 (1982).

    Article  ADS  Google Scholar 

  10. Th. Englert, J.C. Maan, Ch. Uihlein, D.C. Tsui, and A.C. Gossard, Observation of oscillatory linewidths in the cyclotron resonance of GaAs-AlGaAs, Solid State Comm. 46:545 (1983).

    Article  ADS  Google Scholar 

  11. S. Das Sarma, Self-consistent theory of screening in a two-dimensional electron gas under strong magnetic field, Solid State Comm. 36:357 (1980).

    Article  ADS  Google Scholar 

  12. Z. Schlesinger, S.J. Allen, J.C.M. Hwang, P.M. Platzman, and N. Tzoar, Cyclotron resonance in two dimensions, Phys. Rev. B 30:5655 (1984).

    Article  Google Scholar 

  13. C. Kallin, Magnetoplasma modes of the two dimensional electron gas, in: “Interfaces, Quantum Wells and Superlattices,”

    Google Scholar 

  14. C. Kallin and B.I. Halperin, Many-body effects on the cyclotron resonance in a two-dimensional electron gas, Phys. Rev. B 31:3635 (1985).

    Article  ADS  Google Scholar 

  15. A.H. MacDonald, K.L. Liu, S.M. Girvin, and P.M. Platzman, Disorder and the fractional quantum Hall effect: Activation energies and the collapse of the gap, Phys. Rev. B 33:4014 (1986).

    Article  ADS  Google Scholar 

  16. M.A. Paalanen, D.C. Tsui, A.C. Gossard, and J.CM. Hwang, Temperature dependence of electron mobility in GaAs-AlGaAs heterostructures from 1 to 10K, Phys. Rev. B 29:6003 (1984).

    Article  ADS  Google Scholar 

  17. W. Götze and P. Wölfle, Homogeneous dynamical conductivity of simple metals, Phys. Rev. B 6:1226 (1972).

    Article  ADS  Google Scholar 

  18. Y. Shiwa and A. Isihara, On the memory-function formulation of the dynamic conductivity for two-dimensional electrons in a magnetic field, J. Phys. C 16:4853 (1983).

    Article  ADS  Google Scholar 

  19. S. Das Sarma and F. Stern, Single-particle relaxation time versus scattering time in an impure electron gas, Phys. Rev. B 32:8442 (1985).

    Article  ADS  Google Scholar 

  20. T. Ando, Theory of cyclotron resonance lineshape in a two-dimensional electron system, J. Phys. Soc. Jpn. 38:989 (1975).

    Article  ADS  Google Scholar 

  21. Z. Schlesinger, W.I. Wang, and A.H. MacDonald, Dynamical Conductivity of the GaAs two-dimensional electron gas at low temperature and carrier density, Phys. Rev. Lett. 58:73 (1987).

    Article  ADS  Google Scholar 

  22. K. Muro, S. Mori, S. Narita, S. Hiyamizu, and K. Nanbu, Cyclotron resonance of two-dimensional electrons in AlGaAs/GaAs heterojunctions, Surf. Sci. 142:394 (1984).

    Article  ADS  Google Scholar 

  23. B.A. Wilson, S.J. Allen, Jr., and D.C. Tsui, Evidence for a collective ground state in Si inversion layers in the extreme quantum limit, Phys. Rev. Lett. 44:479 (1980);

    Article  ADS  Google Scholar 

  24. B.A. Wilson, S.J. Allen, Jr., and D.C. Tsui, Evidence for a magnetic field induced Wigner glass in the two-dimensional electron system in silicon inversion layers, Phys. Rev. B 24:5887 (1981).

    Article  ADS  Google Scholar 

  25. H. Fukuyama, Y. Kuramoto, and P.M. Platzman, Many-body effects on level broadening and cyclotron resonance in two-dimensional systems under strong magnetic field, Phys. Rev. B 19:4980 (1979).

    Article  ADS  Google Scholar 

  26. G.L.J.A. Rikken, H.W. Myron, P. Wyder, G. Weimann, W. Schlapp, R.E. Horstman and J. Wolter, Anomalous cyclotron resonance linewidth in heterojunctions displaying the fractional quantum Hall effect, J. Phys. C 18:L175 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kallin, C. (1988). Many Body Effects on the Cyclotron Resonance in Electron Inversion Layers. In: Leavens, C.R., Taylor, R. (eds) Interfaces, Quantum Wells, and Superlattices. NATO ASI Series, vol 179. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1045-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1045-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8307-2

  • Online ISBN: 978-1-4613-1045-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics