Skip to main content

Studies of Pulmonary Endothelial Permeability Using Tritiated Dextrans

  • Chapter
Endothelial Cell Biology in Health and Disease

Abstract

For many years physiologists have sought to understand the movement of plasma proteins across the endothelial surface of small blood vessels by applying the physical principles of diffusion and convection to geometric models of small particles and semipermeable membranes. The endothelium has been viewed as a continuous surface containing water-filled channels or “pores” large enough to allow the passage of plasma proteins but small enough to restrict their passage relative to water. The plasma proteins, in turn, have been viewed as inert particles that move through the pores at a rate proportionate to their size and the hydrostatic and oncotic pressure gradients across the endothelium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bignon, J., Jaubert, F., and Jaurand, M. C., 1976, Plasma protein immunocytochemistry and polysaccharide cytochemistry at the surface of alveolar and endothelial cells in the rat lung, J. Histochem. Cytochem. 24:1076–1084.

    Article  PubMed  CAS  Google Scholar 

  2. Brigham, K. L., Bowers, R. E., and Haynes, J., 1979, Increased sheep lung vascular permeability caused by Escherichia coli endotoxin, Circ. Res. 45:292–297.

    PubMed  CAS  Google Scholar 

  3. Cerf, R., and Scheraga, H. A., 1952, Flow birefringence in solutions of macromolecules, Chem. Rev. 51:185–261.

    Article  CAS  Google Scholar 

  4. Chanana, A. D., and Darrel, D. J., 1986, Contamination of lung lymph following standard and modified procedures in sheep, J. Appl. Physiol. 60:809–816.

    PubMed  CAS  Google Scholar 

  5. Chang, R. L. S., Dean, W. P. M., Robertson, C. P. R., and Brenner, B. M., 1975, Permeability of the glomerular capillary wall. III. Restricted transport of polyanions, Kidney Int. 8:212–218.

    Article  PubMed  CAS  Google Scholar 

  6. Danielli, J. F., 1940, Capillary permeability and edema in the perfused frog, J. Physiol. (London) 98:109-129.

    PubMed  CAS  Google Scholar 

  7. DeGennes, P. G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55:572–579.

    Article  Google Scholar 

  8. Firrell, J. C., Lewis, G. P., and Youlten, L. J. F., 1982, Vascular permeability to macromolecules in rabbit paw and skeletal muscle: A lymphatic study with mathematical interpretation of transport processes, Microvasc. Res. 23:294–310.

    Article  PubMed  CAS  Google Scholar 

  9. Garlick, D. G., and Renkin, E. M., 1970, Transport of large molecules from plasma to interstitial fluid and lymph in dogs, Am. J. Physiol. 219:1595–1605.

    PubMed  CAS  Google Scholar 

  10. Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N., 1986, Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-mediated transcytosis, J. Cell Biol. 102:1304–1311.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen-Flaschen, J. H., Lanken, P. N., Pietra, G. G., Sampson, P. M., Johns, L. P., and Fishman, A. P., 1986, Effect of 100% 02 on passage of uncharged dextrans from blood to lung lymph, J. Appl. Physiol. 60:1797–1809.

    Article  PubMed  CAS  Google Scholar 

  12. Haraldsson, B., and Rippe, B., 1985, Serum factors other than albumin for the maintenance of normal capillary permselectivity in rat hindlimb muscle, Acta Physiol. Scand. 123:427–436.

    Article  PubMed  CAS  Google Scholar 

  13. Harris, T. R., and Roselli, A., 1981, A theoretical model of protein, fluid, and small molecule transport in the lung, J. Appl. Physiol. 50:1–14.

    PubMed  Google Scholar 

  14. Henze, E., Schelbert, H. R., Collins, J. D., Najafi, A., Barrio, J. P. R., and Bennett, L. R., 1982, Lymphoscintigraphy with 99mTc-labeled dextran, J. Nucl. Med. 23:923–929.

    PubMed  CAS  Google Scholar 

  15. Hurley, J. V., 1978, Current views on mechanisms of pulmonary edema, J. Pathol. 125:59–79.

    Article  PubMed  CAS  Google Scholar 

  16. Landis, E. M., and Pappenheimer, J. R., 1963, Exchange of substances through capillary walls, in: Handbook of Physiology, Section 2, Vol. II (W.F. Hamilton P. Dow eds.), American Physiological Society, Washington, D.C., pp 961–1034.

    Google Scholar 

  17. Lanken, P. N., Hansen-Flaschen, J. H., Sampson, P. M., Pietra, G. G., Haselton, F. R., and Fishman, A. P., 1985, Passage of uncharged dextrans from blood to lung lymph in awake sheep, J. Appl. Physiol. 59:580–591.

    PubMed  CAS  Google Scholar 

  18. Mayerson, H. S., Patterson, R. M., McKee, A., LeBrie, S. J., and Mayerson, P.,1962, Permeability of lymphatic vessels, Am. J. Physiol. 203:98–106.

    PubMed  CAS  Google Scholar 

  19. Michel, C. C., and Phillips, M. E., 1985, The effects of bovine serum albumin and a form of cationised ferritin upon the molecular selectivity of the walls of single frog capillaries, Microvasc. Res. 29:190–203.

    Article  PubMed  Google Scholar 

  20. Michel, C. C., Phillips, M. E., and Turner, M. R., 1982, The effects of chemically modified albumin on the filtration coefficient of single frog mesenteric capillaries, J. Physiol. (London) 332:11 IP— 112P.

    Google Scholar 

  21. Michel, R. P., 1985, Lung microvascular permeability to dextran in alpha-naphthylthiourea-induced edema, Am. J. Pathol. 119:474–484.

    PubMed  CAS  Google Scholar 

  22. Newman, J. H., Loyd, J. E., English, D. K., Ogletree, M. L., Fulkerson, W. J., and Brighan, K. L., 1983, Effects of 100% oxygen on lung vascular function in awake sheep, J. Appl. Physiol. 54:1379–1386.

    PubMed  CAS  Google Scholar 

  23. Ogston, A. G., Preston, B. N., and Wells, J. D.,1973, On the transport of compact particles through solutions of chain-polymers, Proc. R. Soc. London Ser. B A333:297–309.

    Google Scholar 

  24. Olson, J. L., Rennke, H. G., and Venkatachalam, M. A.,1981, Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats, Lab. Invest. 44:271–279.

    PubMed  CAS  Google Scholar 

  25. Renkin, E. M., 1985, Capillary transport of macromolecules: Pores and other endothelial pathways, J. Appl. Physiol. 58:315–325.

    PubMed  CAS  Google Scholar 

  26. Rennke, H. G., and Venkatachalam, M. A., 1979, Glomerular permeability of macromolecules, J. Clin. Invest. 63:713–717.

    Article  PubMed  CAS  Google Scholar 

  27. Rutili, G., Kvietys, D., Martin, J. C., and Taylor, A. E., 1982, Increased pulmonary microvascular permeability induced by alpha-naphthylthiourea, J. Appl. Physiol. 52:1316–1323.

    PubMed  CAS  Google Scholar 

  28. Schneeberger, E. E., and Hamelin, M., 1984, Interaction of serum proteins with lung endothelial glycocalyx: Its effect on endothelial permeability, Am. J. Physiol. 247:H206–H217.

    PubMed  CAS  Google Scholar 

  29. Simionescu, N., and Palade, G. E., 1971, Dextrans and glycogens as particulate tracers for studying capillary permeability, J. Cell Biol. 50:616–624.

    Article  PubMed  CAS  Google Scholar 

  30. Staub, N. C., Bland, R. D., Brigham, K. L., Demling, R., Erdman, A. J., and Woolverton, W. C., 1975, Preparation of chronic lung lymph fistulas in sheep, J. Surg. Res. 19:315–320.

    Article  PubMed  CAS  Google Scholar 

  31. Staub, N. C., 1979, Pathways for fluid and solute fluxes in pulmonary edema, in: Pulmonary Edema (A.P. Fishman E.M. Renkin, eds.), American Physiological Society, Washington, D.C., pp 113–124.

    Google Scholar 

  32. Thorball, N., 1981, FITC-dextran tracers in microcirculatory and permeability studies using combined fluorescence stereomicroscopy, fluorescence light microscopy and electron microscopy, Histochemistry 71:209–233.

    Article  PubMed  CAS  Google Scholar 

  33. Venkatachalam, M. A., and Rennke, H. G., 1978, The structural and molecular basis of glomerular filtration, Circ. Res. 43:337–347.

    PubMed  Google Scholar 

  34. Villaschi, S., Johns, L., Cirigliano, M., and Pietra, G. G., 1986, Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs, Microvasc. Res. 32:190–199.

    Article  PubMed  CAS  Google Scholar 

  35. Wagner, R. C., Robinson, C. S., Cross, P. J., andDerenny, J. J., 1983, Endocytosis andexocytosis of transferrin by isolated capillary endothelium, Microvasc. Res. 25:387–396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Hansen-Flaschen, J.H., Fishman, A.P. (1988). Studies of Pulmonary Endothelial Permeability Using Tritiated Dextrans. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Biology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0937-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0937-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8254-9

  • Online ISBN: 978-1-4613-0937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics