Skip to main content

Polymeric Data Memories and Polymeric Substrate Materials for Information Storage Devices

  • Chapter
Polymers in Information Storage Technology

Abstract

Starting with a review of optical data memories, this paper then goes into detail on the specific uses of polymers as substrate materials and/or active memory layers in optical data memories. The polymer developments underway for these applications are compared and discussed on the basis of selected examples. In this connection, reference is made to calculation methods for determining the birefringence of polymers and an explanation is given of improvements in measurement and evaluation techniques in the determination of the birefringence of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Kaempf, Polymer J. 19, 257–268 (1987) G. Kaempf, H. Loewer and M.W. Witman, Polymer Eng. Sci. 27, 1421–1435 (1987).

    Article  CAS  Google Scholar 

  2. F. Bauer, K. Harnischmacher and J. Rika, Proc. 5th Int. Symp. on Electrets ISES, 924–929 (1985).

    Google Scholar 

  3. T. Furukawa et al, J. Appi. Phys., 56 (5), 1481–1486 (1987).

    Article  Google Scholar 

  4. W.J. Merz and J.R. Anderson, Bell Lab. Record, 33, 335–342 (1955).

    Google Scholar 

  5. Elektronik 25, 82–86 (1983).

    Google Scholar 

  6. R.C. Cook, US—Patent No. 4 149 301 and 4 149 302.

    Google Scholar 

  7. G.A. Rohrer, US—Patent 4 707 897 L. McMillan, Int. Patent Appi. WO 86/04447 and WO 86/06752, US-Patent 4 713 157 and other.

    Google Scholar 

  8. Electronics, 32 (February 4, 1988) and 91–94, 95 (February 18, 1988).

    Google Scholar 

  9. R. Pott, A. Eiling, G. Kaempf, Europ. Patent EP 0 236 696, US Serial No. 7048/1987.

    Google Scholar 

  10. D. Wohlleben, R. Pott, and A. Eiling, J. Appi. Phys. 61 2999–3010 (1987).

    Google Scholar 

  11. C.F. Pulvari, US—Patent 2 698 928 D.W.G. Byatt, US—Patent 4 059 827.

    Google Scholar 

  12. K. Dransfeld, Europ. Patent EP 0 186 813; US—Patent 6 806 246.

    Google Scholar 

  13. K. Dransfeld and D. Schilling, in press.

    Google Scholar 

  14. G. Binnig and H. Rohrer, Europ. Patent EP 0 027 517.

    Google Scholar 

  15. B. Drake et al, Rev. Sci. Instrum. 57, 441–445 (1986).

    Article  CAS  Google Scholar 

  16. A. Bryant, C.F. Quate et al, Appl. Phys. Lett. 48, 832–834 (1986).

    Article  CAS  Google Scholar 

  17. M. Ringger et al, Appl. Phys. Lett. 46, 832–834 (1985).

    Article  CAS  Google Scholar 

  18. G. Kaempf, K. Dransfeld and A. Pott, Europ. Patent No’. EP 0 275 881.

    Google Scholar 

  19. K. Dransfeld, Europ. Patent No. 3 812 684.2.

    Google Scholar 

  20. A. Todo and H. Kajiura, Japan Plastics 38, No. 7, 41–44 (1987).

    Google Scholar 

  21. J. Hennig, Proc. Int. Symp. on Optical Memory ISOM (1987) Jap. J. Appl. Phys. 26, 9–14 (1987).

    Google Scholar 

  22. G.H. Werumeus Buning et al, Proc. Int. Symp. on Optical Memory ISOM (1987), Poster WC 23.

    Google Scholar 

  23. M. Isobe and S. Imai, Sumitomo Chem. Co., Ltd., Chemical Research Lab. (1986).

    Google Scholar 

  24. R.N. Gardner et al, SPIE Optical Mass Data Storage II, Vol. 695, 48–55 (1986).

    CAS  Google Scholar 

  25. M. Witman, H. Loewer and G. Kaempf, SPI/SPE Plastics— West, 40–44 (1987).

    Google Scholar 

  26. F.P. Hoever, H. Schmid and E. Kops, BAYER AG Leverkusen and Uerdingen (FRG), internal report (1988).

    Google Scholar 

  27. F.-M. Rateike, BAYER AG Leverkusen (FRG), internal report (1988).

    Google Scholar 

  28. K. Sommer, BAYER AG Leverkusen (FRG), internal report (1988).

    Google Scholar 

  29. MackIntosh-Study “High Capacity Information Storage”, Markt + Technik, Nr. 41 v. 11.10.85, 14.

    Google Scholar 

  30. M. Okada et al, NEC Corp., Proc. of The 4th Topical Meeting on Optical Data Storage, 123–126 (1987).

    Google Scholar 

  31. American National Standards for Information Systems ANSI X3B11/87–166R1.

    Google Scholar 

  32. R. Pott, A. Eiling and G. Kaempf, BAYER AG Leverkusen (FRG), internal report (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Kaempf, G., Siebourg, W., Loewer, H., Lazear, N. (1989). Polymeric Data Memories and Polymeric Substrate Materials for Information Storage Devices. In: Mittal, K.L. (eds) Polymers in Information Storage Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0843-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0843-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8110-8

  • Online ISBN: 978-1-4613-0843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics