Skip to main content

Onset of Oscillatory Convection in Horizontal Layers of Low-Prandtl-Number Melts

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

Abstract

This study is devoted to horizontal layers of low-Prandtl-number, Pr, fluids subjected to buoyancy forces in a long rectangular cavity which vertical endwalls are maintained at different temperatures. Our main motivation is to study temperature fluctuations occurring during the growth of metals and semi-conductor crystals (like GaAs) in horizontal-boats (e.g. by Bridgman technique).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artiz-Cohen J.A. and M.G. Velarde (1981). Natural versus forced convection in the two-component Bénard problem: New theoretical results. J. Non-equilib. Therm., 6, 159–164.

    Article  ADS  MATH  Google Scholar 

  • Balasubramanian and Ostrach S. (1984). Physico-Chemical-Hydrodynamics, 5, 3–18

    ADS  Google Scholar 

  • Ben Hadid H. and Roux B. (1987a). Numerical simulation of time-dependent natural convection in horizontal layers. To be published.

    Google Scholar 

  • Ben Hadid H. and Roux B. (1987b). Oscillatory buoyancy-driven flow in horirontal liquid-metal layer. 6th European Symposium Materials Sciences in Microgravity conditions, Bordeaux, France,2–5 Dec.

    Google Scholar 

  • Ben Hadid H. and Roux B. (1987c). Numerical simulation of Marangoni convection in horizontal layers. To be published.

    Google Scholar 

  • Bhattacharyya S.P. and Nadoor S. (1976). Stability of thermal Convection between non-uniformly heated plates. Appl. Sci. Res., 32, 555–570.

    Article  ADS  MATH  Google Scholar 

  • Birikh R.V. (1966a). J. Appl. Math. Mech. (P.M.M.), 30, 356–361.

    Google Scholar 

  • Birikh R.V. (1966b). Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech. Phys.,7, 43.

    Article  ADS  Google Scholar 

  • Birikh R.V., Gershuni G.Z., Zhukhovitskii E.M. and Rudakov R.N. (1969) Stability of the steady convective motion of a fluid with a longitudinal temperature gradient. J. Appl. Math. Mech. (P.M.M.), 33, 937.

    Article  Google Scholar 

  • Bontoux P., Roux B., Schirocky G.H., Markham B.L. and Rosenberger F. (1986). Convection in the vertical midplane of a cylinder - comparison of two-dimensional approximations with three-dimensional results. Int. J. Heat Mass Transfer, 29, 227–240.

    Article  ADS  Google Scholar 

  • Brenier B., Roux B. and Bontoux P. (1986). Comparaison des méthodes Tau-Chebyshev et Galerkin dans l’étude de stabilité des mouvements de convection naturelle. J. Mécanique Théorique et Appliquée, 5, 95–119.

    MATH  Google Scholar 

  • Bullister E.T., Cartage T., Deville M. and Patera A.T. (1986). Spectral simulation of thermal convection in complex geometries. Tenth Int. Conf. Num. Meth. in Fluid Dyn., Beijing, China, 23–27 June.

    Google Scholar 

  • Camel D., Tison P. and Favier J.J. (1986). Marangoni Convection in Liquid Metal Layers. Sixth European Symp. Material Sc. under Microg. conditions. FP-20, ESA SP-256, 87.

    Google Scholar 

  • Carruthers J.R. (1968). Thermal Convection in Horizontal Crystal Growth. J. Crystal Growth ,2,18.

    Article  Google Scholar 

  • Carruthers J.R. (1977). Thermal Convection Instabilities Relevant to Crystal Growth from Liquids. Preparation and Properties of Solid State Materials, Vol.3, Ed. Wilcox and Lefever (M. Dekker, New York).

    Google Scholar 

  • Carruthers J.R. and Winegard W.C. (1967). Thermal Convection and Solute Segregation during Horizontal Melting and Solidification. J. Phys. Chem. Solid, Supplement n°l, 645–649.

    Google Scholar 

  • Cartage T., Demaret P. and Deville M. (1985). Chebyshev Spectral and Pseudo-Spectral Solutions of the Navier-Stokes equations. Lect. Notes in Phys., 218,127–132.

    Article  ADS  Google Scholar 

  • Cole G.S. and Winegard W.C. (1964). Thermal Convection During Horizontal Solidification of Pure Metals and Alloys. J. Institute. Metals, 93, 153–164.

    Google Scholar 

  • Cormack D.E., Leal L.G. and Imberger J. (1974). Natural Convection in a Shallow Cavity with Differentially Heated Endwalls, J. Fluid Mech., 65,209–230.

    Article  ADS  MATH  Google Scholar 

  • Crochet M J., Geyling F.T. and Van Schaftingen J J. (1983). Numerical Simulation of the Horizontal Bridgman Growth of a Gallium Arsenide Crystal. J. Crystal Growth, 65,166–172.

    Article  ADS  Google Scholar 

  • Crochet M J., Geyling F.T. and Van Schaftingen J. J. (1986). Numerical Simulation of the horizontal Bridgman growth. Part I : two-dimensional flow. Submitted for publication.

    Google Scholar 

  • Dupont S., Marchal J.M., Crochet M.J. and Geyling F.T. (1986). Numerical Simulation of the horizontal Bridgman growth. Part II : Three-dimensional flow. Submitted for publication.

    Google Scholar 

  • Fairweather G. and Mitchell A.R. (1967). SIAM J. Num. Anal., 4, 2.

    Article  MathSciNet  Google Scholar 

  • Favier J J., Rouzaud A. and Cornera J. (1986). Influence of Various Hydrodynamic Regimes in Melts on Solidification Interface. submitted to Revue de Physique Appliquée.

    Google Scholar 

  • Gage K.S. and Reid W.H.(1968).The stability of thermally stratified plane Poiseuille flow. J. Fluid Mech., 33, 21–32.

    Article  ADS  MATH  Google Scholar 

  • Gershuni G.Z. and Zhukhovitskii E.M. (1969). Stability of plane-parallel convective motion with respect to spatial perturbations. J. Appl. Math. Mech. (P.M.M.), 33, 855–860.

    Google Scholar 

  • Gill A.E. (1974). A Theory of Thermal Oscillations in Liquid Metals, J. Fluid Mech., 64, 577–588.

    Article  ADS  MATH  Google Scholar 

  • Gresho Ph and Sani R.(1984), Private Communication.

    Google Scholar 

  • Hart J.E. (1972). Stability of thin non-rotating Hadley circulations. J. Atm. Sc., 29, 687–697.

    Article  ADS  Google Scholar 

  • Hart J. E. (1983a). A Note on the Stability of Low Prandtl Number Hadley Circulation. J. Fluid Mech., 132, 271.

    Article  ADS  MATH  Google Scholar 

  • Hart J. (1983b). Low Prandtl Number Convection between Differentially Heated Endwalls, Int. J. Heat Mass Transfer, 26, 1069.

    Article  MATH  Google Scholar 

  • Hurle D.T.J. (1967). Thermo-Hydrodynamic Oscillations in Liquid Metals: The Cause ofImpuritiesStriations in Melt-Grown Crystals. J. Phys. Chem. Solid, Supplement n°l, 659–663.

    Google Scholar 

  • Hurle D.T.J. and Jakeman E. (1973). Natural Oscillations in Heated Fluid Layers. Physics Lett., 43A, 127–129.

    Article  ADS  Google Scholar 

  • Hurle D.T.J., Jakeman E. and Johnson C.P. (1974). Convective Temperature Oscillations inMolten Gallium, J. Fluid Mech., 64, 565–576.

    Article  ADS  Google Scholar 

  • Jakeman E. and Hurle D.T.J. (1972). Rev. Phys. Technol., 3, 3.

    Article  ADS  Google Scholar 

  • . Jones I.P. (1982). Low Prandtl number free convection in a vertical slot. Harwell Report AERE-R 10416.

    Google Scholar 

  • Jordan (1985). J. Crystal Growth, 71, 551–558.

    Article  ADS  Google Scholar 

  • Korpela S.A., Gozum D. and Baxi C.B. (1973). Int. J. Heat Mass Transfer, 16, 1683–1690.

    Article  Google Scholar 

  • Korpela S.A. (1974). A study on the effect of Prandtl number on the stability of the conduction regime of natural convection in an inclined slot. Int. J. Heat Mass Transfer, 17, 215–222.

    Article  Google Scholar 

  • .Laure P. (1986). Etude des mouvements de convection dans une cavité rectangulaire avec un gradient de température horizontal. Submitted to J. Mécanique Théorique et Appliquée.

    Google Scholar 

  • Lee E.I. and Sernas V. (1980). Numerical study of heat transfer in rectangular air closures of aspect ratio less than one. A.S.M.E Paper, 80 /HT-43.

    Google Scholar 

  • Lee Y. and Korpela S.A. (1983). Multicellular convection in a vertical slot. J. fluid Mech., 126, 91–121.

    Article  ADS  MATH  Google Scholar 

  • Liang S.F. and Acrivos A. (1970). Stability of buoyancy-driven convection in a tilted slot. Int. J. Heat Mass Transfer, 13,449–458.

    Article  MATH  Google Scholar 

  • Mueller A. and Wilhelm M. (1964). Z. Naturforch., 19a, 254.

    ADS  Google Scholar 

  • Nikitin S.A. and Polezhaev V.l. (1980)Mathematical simulation of impurity distribution in space processing experiments with semiconductors. XXIIIrd COSPAR, ISC G.2.3. »Budapest, Hungary.

    Google Scholar 

  • Nikitin S.A., Polezhaev V.I. and Fedyushkin A.I. (1981). Mathematical simulation of impurity distribution in crystals prepared under microgravity conditions. J. Crystal Growth, 52, 471–477.

    Article  ADS  Google Scholar 

  • Nikitin S.A. and Polezhaev V.I (1983), Private communication.

    Google Scholar 

  • Ostrach S. (1976), Proc. Second European Symposium on Material Sciences in Space, ESA-SP-114.

    Google Scholar 

  • .Ostrach S., Loka R.R. and Kumar A. (1980). Natural convection in low aspect-ratio rectangular enclosures. Natural Convection in Enclosures-Torrance Ed., A.S.M.E. Heat Transfer Division, Vol.8, New-York, 1–10.

    Google Scholar 

  • .Pamplin B.R. and Bolt G.H. (1976). J. Phys. (Appl. Phys.), 9, 145.

    Article  ADS  Google Scholar 

  • Patterson J. and Imberger J. (1980). Unsteady natural convection in a rectangular cavity. J. Fluid Mech., 100, 65–86.

    Article  ADS  MATH  Google Scholar 

  • Pimputkar S.M. and Ostrach S. (1981). Convective Effects in Crystals Grown from Melts, J. Crystal Growth, 55, 614–646.

    Article  ADS  Google Scholar 

  • Platten J.K. and Legros J.C. (1979). Stabilité de la convection forcée non isotherme. Mémoire Acad. Royale de Belgique.

    Google Scholar 

  • Polezhaev V.I. (1979). Convective processes at low gravity. Proc. 3rd European Symp. On Material Sciences in Space. ESA-SP-142, 25–31.

    Google Scholar 

  • Polezhaev V.I., Dubovik K.G., Nikitin S.A., Prostomolotov A.I. and Fedyushkin A.I. (1981). Convection during crystal growth on Earth and in Space. J. Crystal Growth, 52, 465–470.

    Article  ADS  Google Scholar 

  • Pulicani J.P. and Peyret R. (1986). private communication.

    Google Scholar 

  • Roux B. »Grondin J.C., Bontoux P. and Gilly B. (1978). On a high-order accurate method for the numerical study of natural convection in a vertical square cavity. Numerical Heat Transfert1, 331–349.

    Google Scholar 

  • Roux B., Bontoux P., Loc T.P. and Daube O. (1979). Optimisation of Hermitian methods for N.S. equations in vorticity and streamfunction formulation. Lect Notes in Math., Ed. SpringerVerlag, 771, 450–468.

    Google Scholar 

  • Roux B., Bontoux P. and Henry D. (1984). Numerical and Theorical Study of Different Regimes occuring in Horizontal Fluid Layers, Differentially Heated. Lect Notes in Physics, Ed. SpringerVerlag, 230, 202–21.

    Google Scholar 

  • Simpkins P.G. and Chen K.S. (1983). Natural Convection in Horizontal containers with Applications to Crystal Growth, AT&T Bell Lab. Report.

    Google Scholar 

  • Smith M.K. and Davis S.H. (1983). Instabilities of dynamic thermocapillary liquid layers - Part.1 Convective instabilities. J. Fluid Mech., 132, 119–144.

    Article  ADS  MATH  Google Scholar 

  • Smithells (1976). Metals Reference Book. Butterworth Ed., 5th Edition, London, p. 940.

    Google Scholar 

  • Stewart M.J. and Weinberg F. (1971). J. Crystal Growth, 12, 217–228.

    Article  Google Scholar 

  • Sweet D., Jakeman E. and Hurle D.T.J. (1977). Free convection in the presence of both vertical and orizontal temperature gradients. Phys. of Fluids, 20, 1412–1415.

    Article  ADS  Google Scholar 

  • Tichy J. and Gadgil A. (1982). High Rayleigh number laminar convection in low aspect ratio enclosures with adiabatic horizontal walls and differentially heated vertical walls. J. Heat Transfer, 104, 103–110.

    Article  Google Scholar 

  • Utech H.P. and Early S.G. (1967a). On the Presence of Thermal Convection in the Kinetics Experiments of Rigney and Blakely. Acta Metallurgica, 15, 1238–1239.

    Article  Google Scholar 

  • Utech H.P., Brower W.S. and Early S.G. (1967b). Thermal Convection and Crystal Growth in Horizontal Boats, in : Crystal Growth, Ed. Peiser (Pergamon, Oxford), 201–205.

    Google Scholar 

  • .Utech H.P. and Flemings M.C. (1967). Thermal Convection in Metal-Crystal Growth : Effect of a Magnetic Field. J. Phys. Chem. Solid, Supplement n°1, 651–658.

    Google Scholar 

  • De Vahl Davis G. (1986). Finite difference methods for natural and mixed convection in enclosures. Heat Transfer, Ed. Hemisphere, Washington, 101–109.

    Google Scholar 

  • Viskanta R., Kim D.M. and Gau C. (1986).Three-dimensional natural convection heat transfer of a liquid metal in a cavity. Int. J. Heat Mass Transfer, 29, 475–485.

    Article  Google Scholar 

  • Weber J.E. (1973). On thermal convection between non-uniformly heated planes. Int. J. Heat Mass Transfer, 16, 961–970.

    Article  MATH  Google Scholar 

  • Wilke H. and Loser W. (1983). Numerical calculation of Marangoni convection in a rectangular open boat Crystal Res. & Technol., 18, 825–833.

    Article  Google Scholar 

  • Winters KH., Clife K.A. and Jackson C.P. (1984). A review of extended systems for finding critical points in coupled problems. Numerical Methods for transient and coupled problems. Ed. Pineridge Press, Swansea, U.K.

    Google Scholar 

  • Winters K.H. and Clife K.A. (1986a). The onset of Convection in a bounded fluid with a free surface. Harwell Report HL86/1335. Submitted to J. Comp. Physics.

    Google Scholar 

  • Winters K.H., Clife K.A. and Jackson C.P. (1986b). The Prediction of Instabilities using Bifurcation Theory. Harwell Report HL86/1147. To appear in Transient and Coupled System, Ed. John Wiley, Chichester, U.K.

    Google Scholar 

  • Wirtz R.A. and Tseng W.F. (1980). Natural convection across tilted rectangular enclosures of small aspect ratio. Natural Convection in Enclosures-Torrance Ed., A.S.M.E. Heat Transfer Division, Vol.8, New-York, 47–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Hadid, H.B., Roux, B., Randriamampianina, A., Crespo, E., Bontoux, P. (1988). Onset of Oscillatory Convection in Horizontal Layers of Low-Prandtl-Number Melts. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics