Skip to main content

Mechanism of Copper Transport and Delivery in Mammals: Review and Recent Findings

  • Chapter
Copper Bioavailability and Metabolism

Abstract

The distribution of dietary copper after its absorption from the intestinal tract appears to occur in two stages. In the first stage, copper moves from the intestinal mucosa to the liver and kidney, and in the second stage, it moves from the liver to peripheral tissues. Evidence for these two stages of distribution comes from tracing the path of radiocopper after its intraduodenal or intragastric intubation (or direct injection) into rats. Immediately after intraduodenal administration, radioactive tracer is found in the portal blood, where it attaches to albumin, and transcuprein. The involvement of albumin in the initial transport of incoming copper is well documented (Owen, 1965 and 1971; Marceau and Aspin, 1971; Campbell et al., 1981; Gordon et al., 1987), and albumin has long been known to carry a high affinity copper binding site at its N-terminus (Breslow, 1964; Lau and Sarkar, 1971). The Kd for human albumin has been measured as 10-17 M in the absence of amino acids, and 10-22 M in the presence of L-histidine. As it is by far the most abundant plasma protein, albumin can theoretically bind up to about 40 μg Cu per ml of plasma or serum (assuming about 42 mg of albumin per ml). Nevertheless, albumin is normally relatively unsaturated with copper, binding only about 150 ng Cu per ml in normal adult humans, or less than 15% of the total copper in blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barnes, G., Frieden, E., 1984. Ceruloplasmin receptors of erythrocytes, Bioch. Biophvs. Res. Comm. 125:157–162.

    Article  CAS  Google Scholar 

  • Barrow, L., Tanner, M.S., 1988. Copper distribution among serum proteins in paediatric liver disorders and malignancies, Eur. J. Clin. Invest. 18: 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Breslow, E., 1964. Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin, J. Biol. Chem. 239:3252–3259.

    PubMed  CAS  Google Scholar 

  • Campbell, C.H., Brown, R., Linder, M.C., 1981. Circulating ceruloplasmin is an important source of copper for normal and malignant cells, Biochim. Biophys. Acta 678:27–38.

    PubMed  CAS  Google Scholar 

  • Dameron, C. T., Harris, E.D., 1987b. Regulation of aortic copper/zinc superoxide dismutase. Ceruloplasmin and albumin reactivate and transfer copper to the enzyme in culture, Bioch. J. 248:669–675.

    CAS  Google Scholar 

  • Dameron, C. T., Harris, E.D., 1987a. Regulation of aortic copper/zinc superoxide dismutase with copper. Effects in vivo, Bioch. J. 248:663–668.

    CAS  Google Scholar 

  • Dameron, C. T., Harris, E.D., 1987b. Regulation of aortic copper-zinc superoxide dismutase. Ceruloplasmin and albumin reactivate and transfer copper to the enzyme in culture, Bioch. J. 248:669–675.

    CAS  Google Scholar 

  • Darwish, H.M., Cheney, J.C., Schmitt, R.C., Ettinger, M.J., 1984. Mobilization of copper (II) from plasma components and mechanism of hepatic copper transport. Am. J. Phvsiol. 246: G72–G79.

    CAS  Google Scholar 

  • Frieden, E., 1981. Ceruloplasmin: A multifunctional metalloprotein of vertebrate plasma, in Metal Ions in Biological Systems, H. Sigel (ed.), New York and Basel: Marcell Dekker, pp. 1171–42.

    Google Scholar 

  • Goode, CA., Almezedah, F., Linder, M.C., 1989. Forms of ceruloplasmin in the serum of the rat and man. Am. J. Cell Biol. Abstract #3623.

    Google Scholar 

  • Gordon, D.T., Leinart, A.S., Cousins, J.R., 1987. Portal copper transport in rats by albumin, Am. J. Phys. 252.E327–333.

    CAS  Google Scholar 

  • Harris, E.D., DiSilvestro, R.A., 1981. Correlation of lysyl oxidation activation with the p-phenylenediamine oxidase activity (ceruloplasmin) in serum, Proc. Soc. Exp. Med. 166:528–531.

    CAS  Google Scholar 

  • Hartter, D.E., Barnea, A., 1988. Brain tissue accumulates 67Cu by two ligand-dependent saturable processes, J. Biol. Chem. 263:799–805.

    PubMed  CAS  Google Scholar 

  • Hsieh, S., Frieden, E., 1975. Evidence for ceruloplasmin as a copper transport protein, Biochem. Biophys. Res. Commun. 67:1326–1331.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, M., Tavassoli, M., 1985. Identification of ceruloplasmin receptors on the surface of human blood monocytes, granulocytes and lymphocytes, Exp. Hematol. 13: 806–810.

    PubMed  CAS  Google Scholar 

  • Lau, S., Sarkar, B., 1971. Ternary coordination complex between human serum albumin, copper(II) and L-histidine, J. Biol. Chem. 246:5938–5943.

    PubMed  CAS  Google Scholar 

  • Lau, S., Sarkar, B., 1984. Comparative studies of manganese(II)-, nickel(II)-, zinc(II)-, copper(II)- cadmium(II)-, and iron(III)- binding components in human cord and adult sera, Can. J. Biochem. Cell Biol. 62:449–455.

    Article  PubMed  CAS  Google Scholar 

  • Levy, M., Sober, T., 1960. A simple chromatographic method for preparation of gamma globulin, Proc. Soc. Exp. Biol. Med. 103: 250–252.

    PubMed  CAS  Google Scholar 

  • Linder, M.C., 1988): The biochemistry of copper (Series on the biochemistry of the elements, E. Frieden (ed.), New York: Plenum, in preparation.

    Google Scholar 

  • Linder, M.C. (1985): Nutritional biochemistry of the trace elements. In Nutritional biochemistry and metabolism, M.C. Linder (ed.), pp. 151–197. New York: Elsevier.

    Google Scholar 

  • Linder, M.C, Goode, CA., Weiss, K.C, Wirth, P.L., Vu, H.M., 1988. Mammalian copper transport: Review and recent findings. Proceedings of the Symposium on Metabolism of Minerals and Trace Elements in Human Disease, New Delhi/Aligarh/Srinagar, India, Sept., 1987, M. Abdulla, B. Sarkar (eds.), London: Libbey, in press.

    Google Scholar 

  • Linder, M.C., Goode, CA., 1988. Evidence for transfer of copper from ceruloplasmin to the plasma membrane of rat brain cells during copper uptake, FASEB J. 2: Abstract #.

    Google Scholar 

  • Linder, M.C, Houle, P.A., Isaacs, E., Moor, J.R., Scott, L.E., 1979b. Copper regulation of ceruloplasmin in copper deficient rats, Enzyme 24:23–35.

    PubMed  CAS  Google Scholar 

  • Linder, M.C, Weiss, K.C., Vu, H.M., 1987. Structure and function of transcuprein in transport of copper by mammalian blood plasma, Proceedings of the 6th International Conference on Trace Elements in Man and Animals (TEMA-6), Asilomar, CA.

    Google Scholar 

  • Linder, M.C, Moor, J.R., Wright, K, 1981. Ceruloplasmin assays in diagnosis and treatment of human lung, breast and gastrointestinal cancer, J. Nat. Cancer Inst. 67:263–275.

    PubMed  CAS  Google Scholar 

  • Linder-Horowitz, M., Ruettinger, R.T., Munro, H.N., 1970. Iron induction of electorphoretically -different ferritins in rat liver, heart, and kidney, Bioch. Biophys. Acta 200: 442–448.

    CAS  Google Scholar 

  • McArdle, H.J., Guthrie, J.R., Ackland, M. L., Danks, D.M., 1987. Albumin has no role in the uptake of copper by human fibroblasts, J. Inorg. Chem. 28:00–000.

    Google Scholar 

  • McKee, D.J., Frieden, Earl, 1971. Binding of transition metal ions by ceruloplasmin (ferroxidase), Biochem. 10:3880–3883.

    Article  CAS  Google Scholar 

  • Marceau, N., Aspin, N., 1973. The intracellular distribution of the radiocopper derived from ceruloplasmin and from albumin, Biochim. Biophys. Acta 328:338–350.

    PubMed  CAS  Google Scholar 

  • Morgan, W.T., 1985. The histidine-rich glycoprotein of serum has a domain rich in histidine, proline, and glycine that binds heme and metals, Biochem. 24:1496–1501.

    Article  CAS  Google Scholar 

  • Morley, C.G.D., Bezkorovainy, A., 1985. Cellular iron uptake from transferrin: is endocytosis the only mechanism? Internat. J. Bioch. 17:553–564.

    Article  CAS  Google Scholar 

  • Mulligan, M., Althaus, B.A., Linder, M.C., 1986. Non-ferritin, non-heme iron pools in rat tissues. Internat. J. Bioch. 18: 791–798.

    Article  CAS  Google Scholar 

  • Neumann, P.Z., Sass-Kortsak, A., 1967. The state of copper in human serum: evidence for an amino acid-bound fraction, J. Clin. Invest. 46:646–658.

    Article  PubMed  CAS  Google Scholar 

  • Nunoz, M.T., Cole, E.S., Glass, J., 1983. The reticulocyte plasma membrane pathway of iron uptake as determined by the mechanism of alpha, alpna’-dipyridyl inhibition, J. Biol. Chem. 258:1146–1151.

    Google Scholar 

  • Orena, S.J., Goode, C.A., Linder, M.C., 1986. Binding and uptake of copper from ceruloplasmin, Biochem. Biophys. Res. Commun. 139:822–829.

    Article  PubMed  CAS  Google Scholar 

  • Owen, C.A., Jr., 1965. Metabolism of radiocopper (Cu64) in the rat, Am. J. Physiol. 209:900–904.

    PubMed  CAS  Google Scholar 

  • Owen, C.A., Jr., 1971. Metabolism of copper 67 by the copper-deficient rat, Am. J. PhysioL 221:1722–1727.

    CAS  Google Scholar 

  • Peters, T., 1977. Serum albumin: recent progress in the understanding of its structure and biosynthesis, Clin. Chem. 23:5–12.

    PubMed  CAS  Google Scholar 

  • Sarkar, B., Kruck, T.P.A., 1966. Copper-amino acid complexes in human serum, in Biochemistry of Copper. J. Peisach, P. Aisen, W.E. Blumberg (eds.), New York: Academic Press, pp. 183–1961.

    Google Scholar 

  • Sarkar, B., Laussac, J.-P., Lau, S.-JY, 1983. Transport forms of copper in human serum, in Biological Aspects of Metals and Metal-Related Diseases. B. Sarkar (ed.), Raven Press, New York, pp. 23–40.

    Google Scholar 

  • Stevens, M.D., DiSilvestro, R.A., Harris, E.D., 1984. Specific receptor for cerulosplasmin in membrane fragments from aortic and heart tissues, Biochem. 23:261–1266.

    Article  CAS  Google Scholar 

  • Weiss, K.C., Linder, M.C., and the Los Alamos Radiological Medicine Group, 1985. Copper transport in rats involving a new plasma protein, Am. J. Physiol. 249:E77–E88.

    Google Scholar 

  • Wirth, P.L., Linder, M.C., 1985. Distribution of copper among components of human serum, J. Nat. Cancer Inst. 75:277–284.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Goode, C.A., Dinh, C.T., Linder, M.C. (1989). Mechanism of Copper Transport and Delivery in Mammals: Review and Recent Findings. In: Kies, C. (eds) Copper Bioavailability and Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0537-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0537-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7855-9

  • Online ISBN: 978-1-4613-0537-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics