Skip to main content

Structure, Turnover, and Assembly of Ciliary Membranes in Tetrahymena

  • Chapter
Ciliary and Flagellar Membranes

Abstract

Tetrahymena cells (Fig. 1) have upwards of 600 cilia depending upon the species and the stage in the cell cycle (Nanney, 1971). Of these, about 20% are in the oral apparatus (Williams and Bakowska, 1982). The cilia are easily detached (less so the oral cilia) by the application of mild shearing forces after various chemical treatments (reviewed by Nozawa, 1975). This, combined with the fact that some species will approach 106 cells/ml before entering stationary phase, has made Tetrahymena cilia a favored material for biochemical investigation. Studies of the surface membrane of Tetrahymena cilia will be reviewed here with an emphasis on biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adoutte, A., Ramanathan, R., Lewis, R.M., Dute, R.R., Ling, K.-Y., Kung, C., and Nelson, D.L., 1980, Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes, J. Cell Biol. 84:717–738.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R.D., 1978, Membranes in ciliates: Ultrastructure and fusion, in: Membrane Fusion: Cell Surface Reviews, Volume 5 (G. Poste and G.L. Nicolson, eds.), Elsevier/North-Holland, pp. 657–763.

    Google Scholar 

  • Aufderheide, K., Frankel, J., and Williams, N.E., 1980. Formation and positioning of surface-related structures in protozoa, Microbiol. Rev. 44:252–302.

    PubMed  CAS  Google Scholar 

  • Bannon, G.A., Perkins-Dameron, R., and Allen-Nash, A., 1986, Structure and expression of two temperaturespecific surface proteins in the ciliated protozoan Tetrahymena thermophila, Mol. Cell Biol. 6:3240–3245.

    PubMed  CAS  Google Scholar 

  • Baugh, L.C., Satir, P., and Satir, B., 1976, A ciliary membrane protein Ca+ + ATPase: A correlation between structure and function, J. Cell Biol. 70:66a.

    Google Scholar 

  • Bligh, E.G., and Dyer, W.J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol 37:911–917.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1987, Glycoprotein dynamics in the Chlamydomonas flagellar membrane, Adv. Cell Biol. 1: 97–130.

    Article  Google Scholar 

  • Butzel, H.M., and Decaprio, A., 1978, Ciliary membrane proteins of Tetrahymena thermophila, J. Protozool. 25:267–269.

    CAS  Google Scholar 

  • Dentler, W.L., 1978, Isolation and characterization of Tetrahymena ciliary membranes, J. Cell Biol. 79:284a.

    Google Scholar 

  • Dentler, W.L., 1980a, Microtubule-membrane interactions in cilia. I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis, J. Cell Biol. 84:364–380.

    Article  PubMed  CAS  Google Scholar 

  • Dentler, W.L., 1980b, Structures linking the tips of ciliary and flagellar microtubules to the membrane, J. Cell Sci. 42:207–220.

    PubMed  CAS  Google Scholar 

  • Dentler, W.L., Pratt, M.M., and Stephens, R.E., 1980, Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane-associated dyneinlike ATPase, J. Cell Biol. 84:381–403.

    Article  PubMed  CAS  Google Scholar 

  • Doerder, F.P., 1979, Differential expression of immobilization antigen genes in Tetrahymena thermophila. I. Genetic and epistatic relationships among recessive mutations which alter normal exprssion of i-antigens. Immunogenetics 9:551–562.

    Article  Google Scholar 

  • Doerder, F.P., 1981, Differential expression of immobilization antigen genes in Tetrahymena thermophila. II. Reciprocal and non-reciprocal transfer of immobilization antigen during conjugation and expression of immobilization antigen genes during macronuclear development, Cell Differ. 10:299–307.

    Article  Google Scholar 

  • Doerder, F.P., and Berkowitz, M.S., 1986, Purification and partial characterization of the H immobilization antigens of Tetrahymena thermophila, J. Protozool. 33:204–208.

    PubMed  CAS  Google Scholar 

  • Dute, R., and Kung, C., 1978, Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia, J. Cell Biol. 78:451–464.

    Article  PubMed  CAS  Google Scholar 

  • Erwin, J., and Bloch, K., 1963, Lipid metabolism in ciliated protozoa, J. Biol. Chem. 238:1618–1624.

    CAS  Google Scholar 

  • Fisher, G., Kaneshiro, E.S., and Peters, P.D., 1976, Divalent cation affinity sites in Paramecium aurelia, J. Cell Biol. 69:429–442.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226:497–509.

    PubMed  CAS  Google Scholar 

  • Forney, J.D., Epstein, L.M., Preer, L.B., Rudman, B.M., Widmayer, D.J., Klein, W.H., andPreer, J.R., Jr., 1983, Structure and expression of genes for surface proteins in Paramecium, Mol. Cell Biol. 3:466–474.

    PubMed  CAS  Google Scholar 

  • Frankel, J., Nelsen, E.M., and Martel, E., 1981, Development of the ciliature of Tetrahymena thermophila. II. Spatial subdivision prior to cytokinesis, Dev. Biol. 88:39–54.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, A., and Loyter, A., 1977, Inhibition of conjugation in Tetrahymena pyriformis by concanavalin A. Localization of concanavalin A-binding sites, Exp. Cell Res. 110:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, H., Martin, C.E., Iida, H., Kitajima, Y., Thompson, G.A., Jr., and Nozawa, Y., 1976, Changes in membrane lipid composition during temperature adaptation by a thermotolerant strain of Tetrahymena pyriformis, Biochim. Biophys. Acta 431:165–179.

    PubMed  CAS  Google Scholar 

  • Hadley, G.A., and Williams, N.E., 1981, Control of the initiation and elongation of cilia during ciliary regeneration of Tetrahymena, Mol. Cell Biol. 1:865–870.

    PubMed  CAS  Google Scholar 

  • Haga, N., and Hiwatashi, K., 1981, A protein called immaturin controlling sexual maturity in Paramecium, Nature 289:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Holz, G.G., Jr., and Conner, R.L., 1973, The composition, metabolism, and roles of lipids in Tetrahymena, in: The Biology of Tetrahymena (A.M. Elliott, ed.), Dowden, Hutchinson, & Ross, Stroudsburg, Pa., pp. 99–122.

    Google Scholar 

  • Hufnagel, L.A., 1983, Freeze-fracture analysis of membrane events during early neogenesis of cilia in Tetrahymena: Changes in fairy-ring morphology and membrane topography, J. Cell Sci. 60: 137–156.

    PubMed  CAS  Google Scholar 

  • Jonah, J., and Erwin, J.A., 1971, The lipids of membranous cell organelles isolated from the ciliate, Tetrahymena pyriformis, Biochim. Biophys. Acta 231:80–92.

    PubMed  CAS  Google Scholar 

  • Kennedy, K.E., and Thompson, G.A., Jr., 1970, Phosphonolipids: Localization in surface membranes of Tetrahymena, Science 168:989–991.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, Y., and Thompson, G.A., Jr., 1977, Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscopical evidence, J. Cell Biol. 72:744–755.

    Google Scholar 

  • Love, H.D., Jr., Allen-Nash, A., Zhao, O., and Bannon, G.A., 1988, mRNA stability plays a major role in regulating the temperature-specific expression of a Tetrahymena thermophila surface protein, Mol. Cell Biol. 8:427–432.

    PubMed  CAS  Google Scholar 

  • Mallory, F.B., Gordon, J.T., and Conner, R.L., 1963, The isolation of a pentacyclic triterpenoid alcohol from a protozoan, J. Am. Chem. Soc. 85:1362–1363.

    Google Scholar 

  • Mallory, F.B., Gordon, J.T., and Conner, R.L., 1963, The isolation of a pentacyclic triterpenoid alcohol from a protozoan, J. Am. Chem. Soc. 85:1362–1363.

    Google Scholar 

  • Martindale, D.W., and Bruns, P.J., 1983, Cloning of abundant mRNA species present during conjugation of Tetrahymena thermophila: Identification of mRNA species present exclusively during meiosis, Mol. Cell Biol. 3:1857–1865.

    PubMed  CAS  Google Scholar 

  • Nanney, D.L., 1971, The pattern of replication of cortical units in Tetrahymena, Dev. Biol. 26:296–305.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, D.L., and McCoy, J.W., 1976, Characterization of the Tetrahymena pyriformis complex, Trans. Am. Microsc. Soc. 95:664–682.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, J.R., and Behnke, O., 1971, Studies on a surface coat of Tetrahymena, J. Ultrastruct. Res. 36:542–544.

    Google Scholar 

  • Nozawa, Y., 1975, Isolation of subcellular membrane components from Tetrahymena, in: Methods in Cell Physiology, Volume X (D. Prescott, ed.), Academic Press, New York, pp. 105–133.

    Google Scholar 

  • Nozawa, Y., and Thompson, G.A., Jr., 1971a, Studies of membrane formation in Tetrahymena pyriformis. II. Isolation and lipid analysis of cell fractions, J. Cell Biol. 49:712–721.

    Article  PubMed  CAS  Google Scholar 

  • Nozawa, Y., and Thompson, G.A., Jr., 1971b, Studies of membrane formation in Tetrahymena pyriformis. III. Lipid incorporation into various cellular membranes of logarithmic phase cultures, J. Cell Biol. 49:722–730.

    Article  PubMed  CAS  Google Scholar 

  • Nozawa, Y., and Thompson, G.A., Jr., 1972, Studies of membrane formation in Tetrahymena pyriformis. V. Lipid incorporation into various cellular membranes of stationary phase cells, starving cells, and cells treated with metabolic inhibitors, Biochim. Biophys. Acta 282:93–104.

    Article  PubMed  Google Scholar 

  • Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S., 1974, Studies on Tetrahymena membranes: Temperature-induced alterations in fatty acid compositions of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study, Biochim. Biophys. Acta 367: 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Omura, T., Siekevitz, P., and Palade, G.E., 1967, Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes, J. Biol. Chem. 242:2389–2396.

    PubMed  CAS  Google Scholar 

  • Pagliaro, L., and Wolfe, J., 1987, Concanavalin A binding induces association of possible mating-type receptors with the cytoskeleton in Tetrahymena, Exp. Cell Res. 168:138–152.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, J.E., 1976, Biosynthesis of membrane and membrane glycoprotein in Tetrahymena pyriformis, Comp. Biochem. Physiol. 55:61–63.

    CAS  Google Scholar 

  • Satir, B.H., and Wissig, S.L., 1982, Alveolar sacs of Tetrahymena: Ultrastructural characteristics and similarities of subsurface cisterns of muscle and nerve, J. Cell Sci. 55:13–33.

    PubMed  CAS  Google Scholar 

  • Satir, B., Schooley, C., and Satir, P., 1972, The ciliary necklace in Tetrahymena, Acta Protozool. 11:291–293.

    Google Scholar 

  • Satir, B., Sale, W.S., and Satir, P., 1976, Membrane renewal after dibucaine deciliation of Tetrahymena, Exp. Cell Res. 97:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Sattler, C.A., and Staehelin, L.A., 1974, Ciliary membrane differentiation in Tetrahymena pyriformis, J. Cell Biol. 62:473–490.

    Article  PubMed  CAS  Google Scholar 

  • Skriver, L., 1979, Membrane renewal during ciliary regeneration, Proc. Int. Congr. Biochem. 11:403.

    Google Scholar 

  • Skriver, L., and Williams, N.E., 1980, Regeneration of cilia in starved Tetrahymena thermophila involves induced synthesis of ciliary proteins but not synthesis of membrane lipids, Biochem. J. 188:695–704.

    PubMed  CAS  Google Scholar 

  • Smith, J.D., and Lepak, N.M., 1982, Purification and characterization of a phosphonic acid-containing glycoprotein from the cell membranes of Tetrahymena, Arch. Biochem. Biophys. 213:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.D., Snyder, W.R., and Law, J.H., 1970, Phosphonolipids in Tetrahymena cilia, Biochem. Biophys. Res. Commun. 39:1163–1169.

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah, P.V., and Thompson, G.A., Jr., 1974, Studies of membrane formation in Tetrahymena pyriformis. The biosynthesis of proteins and their assembly into membranes of growing cells, J. Biol. Chem. 249: 1302–1310.

    PubMed  CAS  Google Scholar 

  • Thompson, G.A., Jr., 1967, Studies of membrane formation in Tetrahymena pyriformis. I. Rates of phospholipid biosynthesis, Biochemistry 6:2015–2022.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, G.A., Jr., 1972, Tetrahymena pyriformis as a model system for membrane studies, J. Protozool. 19:231–236.

    PubMed  CAS  Google Scholar 

  • Thompson, G.A., Jr., and Nozawa, Y., 1977, Tetrahymena: A system for studying dynamic membrane alterations within the eucaryotic cell, Biochim. Biophys. Acta 472:55–92.

    PubMed  CAS  Google Scholar 

  • Van Bell, C.T., and Williams, N.E., 1984, Membrane protein differences correlated with the development of mating competence in Tetrahymena thermophila, J. Protozool. 31:112–116.

    PubMed  Google Scholar 

  • Warren, L., and Glick, M.C., 1969, Membranes of animal cells. II. The metabolism and turnover of the surface membrane, J. Cell Biol. 37:729–746.

    Article  Google Scholar 

  • Williams, N.E., 1975, Regulation of microtubules in Tetrahymena, Int. Rev. Cytol. 41:59–86.

    Article  PubMed  CAS  Google Scholar 

  • Williams, N.E., 1983, Surface membrane regeneration in deciliated Tetrahymena, J. Cell Sci. 62:407–417.

    PubMed  CAS  Google Scholar 

  • Williams, N.E., and Bakowska, J., 1982, Scanning electron microscopy of cytoskeletal elements in the oral apparatus of Tetrahymena, J. Protozool 29:382–389.

    Google Scholar 

  • Williams, N.E., and Luft, J.H., 1968, Use of nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena, J. Ultrastruct. Res. 25:271–292.

    Article  PubMed  CAS  Google Scholar 

  • Williams, N.E., Subbaiah, P.V., and Thompson, G.A., Jr., 1980, Studies of membrane formation in Tetrahymena. The identification of membrane proteins and turnover rates in non-growing cells, J. Biol Chem. 255:296–303.

    PubMed  CAS  Google Scholar 

  • Williams, N.E., Doerder, F.P., and Ron, A., 1985, Expression of a cell surface immobilization antigen during serotype transformation in Tetrahymena thermophila, Mol. Cell Biol 5:1925–1932.

    PubMed  CAS  Google Scholar 

  • Wunderlich, F., and Speth, V., 1972, Membranes in Tetrahymena. I. The cortical pattern, J. Ultrastruct. Res. 41:258–269.

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich, F., Speth, V., Butz, W., and Kleinig, H., 1973, Membranes of Tetrahymena. III. The effect of temperature on membrane core structure and fatty acid composition, Biochim. Biophys. Acta 298:39–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, N.E. (1990). Structure, Turnover, and Assembly of Ciliary Membranes in Tetrahymena . In: Bloodgood, R.A. (eds) Ciliary and Flagellar Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0515-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0515-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7845-0

  • Online ISBN: 978-1-4613-0515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics