Skip to main content

The hydrothermal geochemistry of gold

  • Chapter
Book cover Gold metallogeny and exploration

Abstract

Hydrothermal ore-forming fluids are multicomponent aqueous electrolyte solutions which transport gold to an ore-depositing environment somewhere in the Earth’s crust. Deposition of elemental gold and gold–containing minerals occurs in response to changes in the chemical and physical environment through which the hydrothermal ore fluid is migrating. For example, a buoyantly ascending hydrothermal fluid may encounter a permeable zone which induces volatile phase separation and/or boiling, or a deep fluid may encounter and mix with a cooler, steam-heated water of lower pH. Whether or not gold precipitates in these situations has to do with the changing stability of the gold-containing complex ions in response to these new conditions. Hydrothermal gold deposition may, therefore, take place over a wide range of temperature, pressure and fluid composition comprising diverse environments extending from amphibolite facies metamorphism to lower temperature epithermal mineralization and sea floor massive sulphides. It is thus the purpose of this chapter to consider our current state of knowledge concerning the high-temperature, high-pressure aqueous chemistry of gold and its relevance to gold ore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmedzhakova, G.M., Nekrasov I., Ya. Tikhomirova, V.I. and Konyshok, A.A. 1988 Solubility of gold in sulphide-arsenic solutions at 200–300°C. Dokl. Akad. Nauk SSSR300, 1453–1455

    Google Scholar 

  • Anderson, G.M. and Burnham, C.W. 1967 Reactions of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures. Amer. J. Sci. 265, 17–27

    Google Scholar 

  • Bancroft, G.M. and Jean, G. 1982 Gold deposition at low temperature on sulphide minerals. Nature 298, 730– 731.

    Google Scholar 

  • Baranova, N.N., Barsukov, V.L., Dar–yina, T.G. and Bannykh, L.N. 1977 Geochem. Internat 14, 126–132

    Google Scholar 

  • Baranova, N.N., Zotov, A.V., Bannykh, L.N., Dar’yina, T.G. and Savel’yev, B.V. 1984 The effects of redox conditions on the solubility of gold in water at 450°C and 500 atm. Geochem. Internat.21, 117–122

    Google Scholar 

  • Baranova, N.N., Zotov, A.V., Bannykh, L.N., Dar’yina, T.G. and Savel’yev, B.V. 1984 The effects of redox conditions on the solubility of gold in water at 450°C and 500 atm. Geochem. Internat.21, 117–122

    Google Scholar 

  • Belevantsev, V.I., Peshchevitskiy, B.I. and Shamovskaya, G.I. 1981 Gold(I) sulphide complexes in aqueous solution. Isvest. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1, 81–87

    Google Scholar 

  • Bjerrum, N. and Kirschner, A. 1918 Die Rhodanide des Goldes und das freie Rhodan mit einem Anhang über das Goldschlorid. Kgl. Danske Vidensk. Selsk. Skr., Naturvidensk. math. Afdel5, 1–77

    Google Scholar 

  • Bjerrum N. 1948 La stabilite des chlorures d’or. Soc. Chimie Belge Bull. 57, 432–445. Bloom, M. and Seward, T.M. 1989 Work in progress

    Google Scholar 

  • Braunstein, P. and Clark, R.J.H. 1973 J. Chem. Soc. Dalton Trans. 1845–1848. D’yachkova, I.B. and Khodakovskiy, I.L. 1968 Thermodynamic equilibria in the systems, S–H2O, Se–H2O and Te–H2O in the 25–300°C temperature range and their geochemical interpretations. Geochem. Internat.5, 1108–1125

    Google Scholar 

  • Ellis, A.J. 1967 The chemistry of some explored geothermal systems. In Geochemistry of Hydrothermal Ore Deposits( 1st edn. ), ed. Barnes, H.L. Holt, Rinehart and Winston, New York, 465–514

    Google Scholar 

  • Gadet, M. and Pouradier, J. 1972 Hydrolyse des complexes de l’or(I). C.R. Acad. Sci. Paris275, 1061–1064

    Google Scholar 

  • Giggenbach, W.F. 1971 Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulphide. Inorg. Chem. 10, 1333–1338. Giggenbach, W.F. 1974 Kinetics of the poly sulphide-thiosulphate disproportionation up to 240°C. Inorg. Chem. 13, 1730–1733

    Google Scholar 

  • Giggenbach, W.F. 1980 Geothermal gas equilibria. Geochim. Cosmochim. Acta44, 2021–2032

    Article  Google Scholar 

  • Glyuk, D.S. and Khlebnikova, A.A. 1982 Gold solubility in water, HC1, HF and sodium and potassium chloride, fluoride, carbonate and bicarbonate solutions at a pressure of 1000 kg/cm2. Dokl. Akad. Nauk SSSR254, 190–194

    Google Scholar 

  • Goguel, R.L. 1988 Ultratrace metal analysis of New Zealand geothermal waters by ICP-MS. In Trace Elements in New Zealand: Environmental, Human and Animal, Proc. NZ Trace Elements Group Conf., Canterbury, Dec. 1988, 263–270

    Google Scholar 

  • Grigor’yeva, T.A. and Sukneva, L.S. 1981 Effects of sulphur and of antimony and arsenic sulphides on the solubility of gold. Geochem. Internat. 18, 153–158. Hannington, M.D., Peter, J.M. and Scott, S.D. 1986 Gold in seafloor polymetallic sulfide deposits. Econ. Geol.81, 1867–1883

    Google Scholar 

  • Hedenquist, J.W. and Henley, R.W. 1985 Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias and relation to precious metal mineralisation. Econ. Geol.80, 1640–1668

    Article  Google Scholar 

  • Helgeson, H.C. 1969 Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Amer. J. Sci.267, 729–804

    Article  Google Scholar 

  • Henley, R.W. 1973 Solubility of gold in hydrothermal chloride solutions. Chem. Geol.11, 73–87

    Article  Google Scholar 

  • Henley, R.W. 1985 Personal communication.

    Google Scholar 

  • Henley, R.W., Truesdell, A.H., Barton, P.B. Jr and Whitney, J.A. 1984 Fluid Mineral Equilibria in Hydrothermal Systems. Reviews in Economic Geology, Vol.1, Society of Economic Geologists, 267pp.

    Google Scholar 

  • Hyland M.M. and Bancroft G.M. 1989 An XPS study of gold deposition at low temperatures on sulphide minerals: Reducing agents. Geochim. Cosmochim. Acta53, 367–372

    Article  Google Scholar 

  • Jean, G.E. and Bancroft, G.M. 1985 An XPS and SEM study of gold deposition at low temperature on sulphide mineral surfaces: Concentration of gold by adsorption/reduction. Geochim. Cosmochim. Acta49, 979–987

    Article  Google Scholar 

  • Johnson, PR., Pratt, J.M. and Tilley, R.I. 1978. Experimental determination of the standard reduction potential of the gold(I) ion. J. Chem. Soc. Chem. Comm.606–607

    Google Scholar 

  • Jorgensen, C.K. and Pouradier, J. 1970 Un nouveau type de stabilisation du ‘champ des ligandes’ dans les complexes lineaires de cuivre(I), de l’argent(I) et de l’or(I). J. Chim. Phys.67, 124–127

    Google Scholar 

  • Kakovsky, I.A. and Tyurin, N.G. 1962 Behaviour of gold in polysulphide solutions at elevated temperatures and pressures. Izv. Vyssh. Ucheb. Zaved, Tsvet. Metallurgiya, 104–111 (in Russian)

    Google Scholar 

  • Krauskopf, K.B. 1951 The solubility of gold. Econ. Geol.46, 858–870

    Article  Google Scholar 

  • Krupp, R.E. and Seward, T.M. 1987 The Rotokawa geothermal system, New Zealand: An active epithermal ore–depositing environment. Econ. Geol.82, 1109–1129

    Article  Google Scholar 

  • Latimer, W.M. (1952) The Oxidation States of the Elements and their Potentials in Aqueous Solutions. Prentice-Hall, Englewood Cliffs, N.J. 392 pp

    Google Scholar 

  • Leary, K. and Bartlett, N. 1972 A new oxidation state of gold: The preparation and some properties of [AuF6]salts. J. Chem. Soc. Chem. Comm.903–904

    Google Scholar 

  • Lebedev, L.M. 1972 Minerals of contemporary hydrotherms of Cheleken. Geochem. Internat.9, 485–504

    Google Scholar 

  • Lehner, V. 1912 The transport and deposition of gold in nature. Econ. Geol.7, 744–750

    Article  Google Scholar 

  • Linder, J.L. and Gruner, J.W. 1939 Action of alkali sulphide solutions on minerals at elevated temperatures. Econ. Geol.34, 537–560

    Article  Google Scholar 

  • Nekrasov, I. Ya., Konyshok, A.A. and Sorokin, V.I. 1982 Form of gold(I) in antimony–bearing sulphide solutions. Dokl. Akad. Nauk264, 207–210 (Engl, transl.)

    Google Scholar 

  • Nekrasov, I. Ya. and Konyshok, A.A. 1982 Heteropolynucleate gold complexes in antimony-bearing sulphide solutions. Dolk. Akad. Nauk SSSR266, 185–188 (Engl, transl.)

    Google Scholar 

  • Nikolaeva, N.M., Yerenburg, A.M. and Antinina, V.A. 1972 Temperature dependence of the standard potential of halide complexes of gold. Izvest. Sib. Otd. Akad. SSSR, Ser. Khim.4, 126–129

    Google Scholar 

  • Ogryzlo, S.P. 1935 Hydrothermal experiments with gold. Econ. Geol.30, 440–424

    Article  Google Scholar 

  • Panson, A.J. 1963 Polarography of the ditelluride ion. J. Phys. Chem.67, 2177–2180

    Article  Google Scholar 

  • Panson, A.J. 1964 A study of the telluride ion system. J. Phys. Chem.68, 1721–1724

    Article  Google Scholar 

  • Paramonova, V.I., Vartenev, S.A., Klemina, A.M., Zhuravleva, Ye. L. and Zhuchko, V. Ye 1988 Extraction and concentration of microamounts of gold from Cheleken brines by the sorption method. Geochem. Internat.25, 124–127

    Google Scholar 

  • Parish R.V., Parry O. and McAuliffe C.A. 1981 Characterisation of two-, three- and four–coordinate gold(I) complexes by 197 Mössbauer and 31P– (1H) nuclear magnetic resonance spectroscopy. J. Chem. Soc. Dalton Trans 2098–2104

    Google Scholar 

  • Parish, R.V. 1984 Gold-197 Mössbauer spectroscopy in the characterization of gold compounds. In Modern Inorganic Chemistry, Vol.1, Mössbauer Spectroscopy Applied to Inorganic Chemistry, ed. Long, G.J. Pergamon Press, 577–617

    Google Scholar 

  • Peshchevitsky, B.I., Yerenberg, A.M., Belevantsev, V.I. andKazakov, V.P. 1970 Stability of gold complexes in aqueous solutions. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 75– 83 (in Russian)

    Google Scholar 

  • Pouradier, J., Gadet, M.C. and Chateau, H. 1965 Electrochimie des sels d’or. 1. Acides auro et aurichlorhydrigues et sels correspondants. J. Chim. Phys62, 203–216

    Google Scholar 

  • Pryor, W.A. 1960 The kinetics of the disproportionation of sodium thiosulphate to sodium sulfide and sulfate. J. Amer. Chem. Soc82, 4794–4797

    Article  Google Scholar 

  • Puddephatt, R.J. 1978 The Chemistry of Gold. Elsevier, Amsterdam. 274 pp

    Google Scholar 

  • Pyykkö, P. 1988. Relativistic effects on structural chemistry. Chem. Rev88, 563–594

    Article  Google Scholar 

  • Renders, P.J. and Seward, T.M. (1989a) The stability of hydrosulphido-and sulphido-complexes of Au(I) and Ag(I) at 25°C. Geochim. Cosmochim. Acta53, 245–253

    Article  Google Scholar 

  • Renders, P.J. and Seward, T.M. 1989b The adsorption of thio gold(I) complexes by amorphous AS2S3 and Sb2S3 at 25 and 90°C. Geochim. Cosmochim. Acta53, 255–267

    Article  Google Scholar 

  • Ryabchikov, I.D. Baranova, N.N., Zotov, A.V. and Orlova, G.P. 1985 The stability of Au(OH)0 in supercritical water and the metal contents of fluids in equilibrium with a granite magma. Geochem. Internat22, 116–117

    Google Scholar 

  • Rytuba, J.J. and Dickson, F.W. 1977 Reaction of pyrite + pyrrhotite + quartz + gold with NaCl–H20 solutions, 300–500°C, 500 to 1500 bars and genetic implications. In Problems of Ore Deposition, 4th IAGOD Symposium, Varina, 1974, Vol. 11. Bulgarian Acad. Sciences, Sofia

    Google Scholar 

  • Schwerdtfeger, P. 1989 Relativistic effects in gold chemistry. II. The stability of complex halides of gold(IH). J. Amer. Chem. Soc. Ill, 7261–7262

    Google Scholar 

  • Schwerdtfeger, P., Dolg, M., Schwarz, W.H.E., Bowmaker, G.A. and Boyd, P.D.W. 1989 Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys. 91, 1762–1774

    Google Scholar 

  • Seward, T.M. 1973 Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta37, 379–399

    Article  Google Scholar 

  • Seward, T.M. 1984 The transport and deposition of gold in hydrothermal systems. In Gold’ 82: The Geology, Geochemistry and Genesis of Gold Deposits, ed. Foster, R.P. Balkema Press, Rotterdam, 165–181

    Google Scholar 

  • Seward, T.M. 1989 The hydrothermal chemistry of gold and its implications for ore formation: boiling and conductive cooling as examples. Econ. Geol.Mono6, 398–404

    Google Scholar 

  • Shenberger, D.M. 1985 Gold solubility in aqueous sulphide solutions. M.Sc. thesis, Pennsylvania State University. 102 pp

    Google Scholar 

  • Shenberger, D.M. and Barnes, H.L. 1989 Solubility of gold in aqueous sulphide solutions from 150 to 350°C. Geochim. Cosmochim. Acta.53, 269–278

    Article  Google Scholar 

  • Skibsted, L.H. and Bjerrum, J. 1974 Studies on gold complexes. II. The equilibrium between gold(I) and gold(III) in the ammonia system and the standard potentials of the couples involving gold, diamminegold(I) and tetramminegold(III). Acta Chem. ScandA28, 764–770

    Article  Google Scholar 

  • Skinner, B.J., White, D.E., Rose, H.J. and Mays, R.E. 1967 Sulfides associated with the Salton Sea geothermal brine. Econ. Geo, l62, 316–330

    Google Scholar 

  • Smith, F.G. 1944 The alkali sulphide theory of gold deposition. Econ. Geol38, 561–590

    Article  Google Scholar 

  • Starling, A., Gilligan, J.M., Carter, A.H.C., Foster, R.P. and Saunders, R.A. 1989 High-temperature hydrothermal precipitation of precious metals on the surface of pyrite. Nature340, 298–300

    Article  Google Scholar 

  • Subzhiyeva, T.M. and Volkov, I.I. 1982 Thiosulfates and sulfites in thermal and hydrothermal waters. Geochem. Internat. 191, 94–98

    Google Scholar 

  • Sunder, W.A., Wayda, A.L., Distefano, D., Falconer, W.E. and Griffiths, J.E. 1979 Syntheses and Raman spectra of nitrosyl fluorometallate salts. J. Fluorine Chem14, 299–325

    Article  Google Scholar 

  • Takano, B. 1987 Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science235, 1633–1635

    Article  Google Scholar 

  • Takano, B. and Watanuki, K. 1988 Quenching and liquid chromatographic determination of polythionates in natural water. Talanta35, 847–854

    Article  Google Scholar 

  • Timakov, A.A., Prusakov, V.N. and Drobysheskii, Yu.V. 1986 Gold heptafluoride. Dolk. Akad. Nauk SSSR291, 125–128

    Google Scholar 

  • Uematsu, M. and Franck, E.U. 1980 The static dielectric constant of water and steam. J. Phys. Chem. Ref Data9, 1291–1301

    Article  Google Scholar 

  • Vilor, N.V. 1973 Laboratory and theoretical data on gold and silica in hydrochemical process. Candidate thesis, Inst. Zemnoy Kory SO AN SSSR, Irkutsk

    Google Scholar 

  • Webster, J.G. 1987 Thiosulphate in surficial geothermal waters, North Island, New Zealand. Appl. Geochem, 2, 579–584

    Google Scholar 

  • Webster, J.G. 1987 Thiosulphate in surficial geothermal waters, North Island, New Zealand. Appl. Geochem, 2, 579–584

    Google Scholar 

  • GOLD METALLOGENY AND EXPLORATION

    Google Scholar 

  • Weissberg, B.G. 1970 Solubility of gold in hydrothermal alkaline sulphide solutions. Econ. Geol. 65, 551–556

    Article  Google Scholar 

  • Weissberg, BG., Browne, PRL and Seward, TM 1979 Ore metals in active geothermal systems. In Geochemistry of Hydrothermal Ore Deposits ( 2nd edn. ), ed. Barnes, HL Wiley– Interscience, New York, 738–780

    Google Scholar 

  • Wood, S.A., Crerar, D.A. and Borcsik, M.P. 1987 Solubility of the assemblage pyrite–pyrrhotite–magnetite–sphalerite–galena–gold–stibnite–bismuthinite–argentite–molybd– enite in H20–NaCl–C02 solutions from 200 to 350°C. Econ. Geol. 82, 1864–1887

    Google Scholar 

  • Zotov, A.V., Baranova, N.N., Dar’yina, T.G., Bannykh, L.N. and Kolotov, V.P. 1985 The stability of AuOH0 in water at 300–500°C and 500–1500 atm. Geochem. Internat. 22, 156–161

    Google Scholar 

  • Zotov, A.V., Baranova, N.N., Dar’yina, T.G., Bannykh, L.N. and Kolotov, V.P. 1985 The stability of AuOH0 in water at 300–500°C and 500–1500 atm. Geochem. Internat. 22, 156–161

    Google Scholar 

  • Zviagincev, O.E. and Paulsen, I. A. 1940 Contribution to the theory of formation of vein gold deposits. Dokl. Akad. Nauk SSSR 26, 647–651

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Blackie and Son Ltd

About this chapter

Cite this chapter

Seward, T.M. (1991). The hydrothermal geochemistry of gold. In: Gold metallogeny and exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0497-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0497-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7837-5

  • Online ISBN: 978-1-4613-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics