Skip to main content

Adenosine and Adrenergic Mediated Effects in the Heart

  • Chapter
Purines and Myocardial Protection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

Abstract

This chapter describes some of the observations that have led to the present understanding of the antiadrenergic actions of adenosine that occur via adenosine A1 receptor activation. Additional information and references can be found in other more extensive reviews (1,2). While adenosine has been viewed as a promising and potentially important molecule in the myocardium, recent work has not only elevated the significance of this molecule, but uncovered new functional roles as well. Because space is limited, it is impossible to cite many important reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev 1990;70:761–845.

    PubMed  CAS  Google Scholar 

  2. Linden, J. Structure and function of A 1 adenosine receptors. FASEB J 1991;5:2668–2676.

    PubMed  CAS  Google Scholar 

  3. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–813.

    PubMed  CAS  Google Scholar 

  4. Feigl EO. Coronary Physiology. Physiol Rev 1983;63:1–205.

    PubMed  CAS  Google Scholar 

  5. Meininger CJ, Schelling ME, Granger HJ. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 1988;255:H554–H562.

    PubMed  CAS  Google Scholar 

  6. Ethier MF, Chander V, Dobson JG Jr. Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 1993;265:H131–H138.

    PubMed  CAS  Google Scholar 

  7. Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis 1989;32:73–97.

    Article  PubMed  CAS  Google Scholar 

  8. Fenton RA, Moore EDW, Fay FS, Dobson JG Jr. Adenosine reduces the Ca2+ transients of isoproterenol-stimulated rat ventricular myocytes. Am J Physiol 1991;261:C1107–C1114.

    PubMed  CAS  Google Scholar 

  9. Lerman BB, Wesley RC, Belardinelli L. Electrophysiologic effects of dipyridamole on atrioventricular nodal conduction and supraventricular tachycardia: Role of endogenous adenosine. Circulation 1989;80:1536–1543.

    Article  PubMed  CAS  Google Scholar 

  10. Dobson JG Jr. Reduction by adenosine of the isoproterenol-induced increase in cyclic adenosine 3′, 5′-monophosphate formation and glycogen Phosphorylase activity in rat heart muscle. Circ Res 1978;43:785–792.

    PubMed  CAS  Google Scholar 

  11. Schrader J, Baumann G, Gerlack E. Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 1977;372:29–35.

    Article  PubMed  CAS  Google Scholar 

  12. Endoh M, Yamashita S. Adenosine antagonizes the positive inotropic action mediated via β-, but not α-adrenoceptors in the rabbit papillary muscle. Eur J Pharmacal 1980,65:445–448.

    Article  CAS  Google Scholar 

  13. Bohm M, Bruckner R, Meyer W, Nose M, Schmitz W, Scholz H, Starbatty J. Evidence for adenosine receptor-mediated isoprenaline antagonistic effects of the adenosine analogs PIA and NECA on force of contraction in guinea-pig atrial and ventricular cardiac preparations. Naunyn-Schmiedeberg’s Arch Pharmacol 1985;331:131–139.

    Article  CAS  Google Scholar 

  14. Epstein SE, Levey GS, Skelton CL. Adenylate cyclase and cyclic AMP. Biochemical links in the regulation of myocardial contractility. Circulation 1971;43:437–448.

    PubMed  CAS  Google Scholar 

  15. Romano FD, Macdonald SG, Dobson JR Jr. Adenosine receptor coupling of adenylate cyclase of rat ventricular myocyte membranes. Am J Physiol 1989;257:H1088–H1095.

    PubMed  CAS  Google Scholar 

  16. Dobson JG Jr, Mayer SE. Mechanism of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ Res 1973;33:412–420.

    PubMed  CAS  Google Scholar 

  17. Dobson JG Jr, Ross J Jr, Mayer SE. The role of cyclic adenosine 3′, 5′,- monophosphate and calcium in the regulation of contractility and glycogen Phosphorylase activity in guinea pig papillary muscle. Circ Res 1976;39:388–395.

    PubMed  CAS  Google Scholar 

  18. Brown DF, Honeyman TW, Dobson JG Jr. Properties of epinephrine-induced activation of cardiac adenosine 3′, 5′-monophosphate dependent protein kinase. Biochim Biophys Acta 1978;544:462–473.

    PubMed  CAS  Google Scholar 

  19. Dobson JG Jr. Protein kinase regulation of cardiac Phosphorylase activity and contractility. Am J Physiol 1978;234:H638–H645.

    PubMed  CAS  Google Scholar 

  20. Dobson JG Jr. Cyclic AMP-dependent activation of protein kinases in the myocardium. In Delius W, Gerlach E, Grobecker H, Kubler W, editors. Catecholamines and the Heart: Recent Advances in Experimental and Clinical Research. Springer-Verlag, Berlin, 1981;128–140.

    Google Scholar 

  21. Dobson JG Jr. Catecholamine-induced phosphorylation of cardiac muscle proteins. Biochim Biophys Acta 1981;675:123–131.

    PubMed  CAS  Google Scholar 

  22. Barany M, Barany K. Protein phosphorylation in cardiac and vascular smooth muscle. Am J Physiol 1981;241:H117–H128.

    PubMed  CAS  Google Scholar 

  23. Lindemann JP, Jones LR, Hathaway DR, Henry BG. Watanabe AM. Β-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 1983;258:464–471.

    PubMed  CAS  Google Scholar 

  24. Stull JT. Phosphorylation of contractile proteins in relation to muscle function. Adv Cyclic Nucleotide Res 1980;13:39–93.

    PubMed  CAS  Google Scholar 

  25. LaMonica DA, Frohloff N, Dobson JG Jr. Adenosine inhibition of catecholamine stimulated cardiac membrane adenylate cyclase. Am J Physiol 1985;248:H737–H744.

    PubMed  CAS  Google Scholar 

  26. Dobson JG Jr. Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res 1983;52:151–160.

    PubMed  CAS  Google Scholar 

  27. Fenton RA, Dobson JG Jr. Adenosine and calcium alter adrenergic-induced intact heart protein phosphorylation. Am J Physiol 1984;246:H559–H565.

    PubMed  CAS  Google Scholar 

  28. George EE, Romano FD, Dobson JG Jr. Adenosine and acetylcholine reduce isoproterenol- induced protein phosphorylation of rat myocytes. J Mol Cell Cardiol 1991;23:749–764.

    Article  PubMed  CAS  Google Scholar 

  29. Dobson JG Jr, Fenton RA, Romano FD. The antiadrenergic actions of adenosine in the heart. Topics and Perspectives in Adenosine Research, In Gerlach E, Becker BF, editors. Springer-Verlag, Berlin, 1987;356–368.

    Google Scholar 

  30. Rockoff JB, Dobson JG Jr. Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility. Am J Physiol 1980;239:H365–H370.

    PubMed  CAS  Google Scholar 

  31. Dobson JG Jr. Adenosine reduces catecholamine contractile responses in oxygenated and hypoxic atria. Am J Physiol 1983;245:H468–H474.

    PubMed  CAS  Google Scholar 

  32. Dobson JG Jr. Interaction between adenosine and inotropic interventions in guinea pig atria. Am J Physiol 1983;245:H475–H480.

    PubMed  CAS  Google Scholar 

  33. Dobson JG Jr, Fenton RA. Antiadrenergic effects of adenosine in the heart. Regulatory Function of Adenosine. In Berne RM, Rail TW, Rubio R, editors. Martinus Nijhoff Publishers, The Hague, 1983;363–376.

    Google Scholar 

  34. Behnke N, Müller W, Neumann J, Schmitz W, Scholz H, Stein B. Differential antagonism by l,3-dipropylxanthine-8-cyclopentylxanthine and 9-chloro-2-(2-furanyl)-5,6-dihydro-l,2,4- triazolo(l,5-C)quinazolin-5-imine of the effects of adenosine derivatives in the presence of isoprenaline on contractile response and cyclic AMP content in cardiomyocytes. Evidence for the coexistance of A 1 - and A 2 -adenosine receptors on cardiomyocytes. J Pharmacol Exptl Ther 1990;254:1017–1023.

    CAS  Google Scholar 

  35. Newby AC, Worku Y, Meghji P, Nakazawa M, Skladanowski AC. Adenosine: A retaliatory metabolite or not? NIPS 1990;5:67–70.

    CAS  Google Scholar 

  36. Dobson JG Jr, Fenton RA, Romano FD. Increased myocardial adenosine production and reduction of β-adrenergic contractile response in aged hearts. Circ Res 1990;66:1381–1390.

    PubMed  CAS  Google Scholar 

  37. Romano FD, Naimi TS, Dobson JG Jr. Adenosine attenuation of catecholamine– enhanced contractility of rat heart in vivo. Am J Physiol 1991;260:H1635–H1639.

    PubMed  CAS  Google Scholar 

  38. Dukes ID, Williams EMV. Effects of selected α 1 -, α 2-, , β 1 -, and β 2 -adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol (Lond) 1984;355:523–546.

    PubMed  CAS  Google Scholar 

  39. Ask JA, Stene-Larsen G, Helle KB, Resch F. Functional β 1 and β 2 -adrenoceptors in the human myocardium. Acta Physiol Scand 1985;123:81–88.

    Article  PubMed  CAS  Google Scholar 

  40. Motomura S, Zerkowski H-R, Daul A, Brodde O-E. On the physiologic role of beta-2 adrenoceptors in the human heart: in vitro and in vivo studies. Am Heart J 1990;119:608– 619.

    Article  Google Scholar 

  41. Xiao R-P, Lakatta EG. Β 1 -Adrenoceptor stimulation and β 2 -adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 1993;73:286–300.

    PubMed  CAS  Google Scholar 

  42. Xiao R-P, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG. Beta 2-Adrenereic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 1994;269:19151–19156.

    PubMed  CAS  Google Scholar 

  43. Hescheler J, Nawrath H, Tang M, Trautwein W. Adrenoceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea-pigs and rabbits. J Physiol (Lond) 1988;397: 657–670.

    PubMed  CAS  Google Scholar 

  44. Fedida D. Modulation of cardiac contractility by α 1 adrenoceptors. Cardiovasc. Res. 1993;27:1735–1742.

    Article  PubMed  CAS  Google Scholar 

  45. Kitakaze M, Hon M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T. α 1 -Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 1987;60:631–639.

    PubMed  CAS  Google Scholar 

  46. Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R. Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins. Rec Prog Hormone Res 1985;41:41–99.

    CAS  Google Scholar 

  47. Hazeki O, Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem 1981;256:2856–2862.

    PubMed  CAS  Google Scholar 

  48. Jakobs AJ, Aktories K, Schultz G. Mechanism of pertussis toxin action on the adenylate cyclase system. Eur J Biochem 1984;140:177–181.

    Article  PubMed  CAS  Google Scholar 

  49. Romano FD, Fenton RA, Dobson JG Jr. The adenosine R i - agonist, phenylisopropyl- adenosine, reduces high affinity isoproterenol binding to the β-adrenergic receptor of rat myocardial membranes. Second Messengers Phosphoproteins 1988;12:29–43.

    PubMed  CAS  Google Scholar 

  50. Burns RF, Lu GH, Pugsley TA. Adenosine receptor subtypes: binding studies. Topics and perspectives in Adenosine Research, In Gerlach E, Becker BF, editors. Springer-Verlag, Berlin, 1987;59–73.

    Google Scholar 

  51. Romano FD, Dobson JG Jr. Adenosine modulates β-adrenergic signal transduction in guinea pig heart ventricular membranes. J Mol Cell Cardiol 1990;22:1359–1370.

    Article  PubMed  CAS  Google Scholar 

  52. Wilken A, Tawfik-Schlieper H, Schwabe U. Evidence against the presence of At adenosine receptors on guinea pig ventricular myocytes. Eur J Pharmacol 1991;192:161–163.

    Article  PubMed  CAS  Google Scholar 

  53. Xu D, Kong H, Liang BT. Expression and pharmacological characterization of a stimulatory subtype of adenosine receptor in fetal chick ventricular myocytes. Circ Res 1992;70:56–65.

    PubMed  CAS  Google Scholar 

  54. Stein B, Mende U, Neumann J, Schmitz W, Scholz H. Pertussis toxin unmasks stimulatory myocardial A 2 -adenosine receptors on ventricular cardiomyocytes. J Mol Cell Cardiol 1993;25:655–659.

    Article  PubMed  CAS  Google Scholar 

  55. Dobson JG Jr, Fenton RA. Adenosine A 2 -receptor agonists elicit a positive inotropic response and increase adenylyl cyclase activity in rat ventricular myocytes. Drug Develop Res 1994;31:265. (Abstract)

    Google Scholar 

  56. Zucchi R, Ronca-Testoni S, Galbani P, Yu G, Mariani M, Ronca G. Cardiac A 2 adenosine receptors – influence of ischemia. Cardiovasc Res 1992;26:549–554.

    Article  PubMed  CAS  Google Scholar 

  57. Gerencer RZ, Finegan BA, Clanachan AS. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs. Br J Pharmacol 1992;107:1048–1056.

    PubMed  CAS  Google Scholar 

  58. Sperelakis, N. Regulation of calcium slow channels of the cardiac muscle by cyclic nucleotides and phosphorylation. J Mol Cell Cardiol 1988;20(Suppl 2):75–105.

    Article  PubMed  CAS  Google Scholar 

  59. England PJ, Shahid M. Effects of forskolin on contractile responses and protein phosphorylation in the isolated perfused rat heart. Biochem J 1987;246:687–695.

    PubMed  CAS  Google Scholar 

  60. Lindemann JP, Watanabe AM. Muscarinic cholinergic inhibition of β-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J Biol Chem 1985;260:13122–13129.

    PubMed  CAS  Google Scholar 

  61. Garvey JL, Kranias EG, Solaro RJ. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem J 1988;249:709–714.

    PubMed  CAS  Google Scholar 

  62. Fabiato A, Fabiato F. Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 1979;41:473–484.

    Article  PubMed  CAS  Google Scholar 

  63. Barcenas-Ruiz L, Wier WG. Voltage dependence of intracellular [Ca2+] i - transients in guinea pig ventricular myocytes. Circ Res 1987;61:148–154.

    PubMed  CAS  Google Scholar 

  64. Fabiato A. Stimulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985;85:291–320.

    Article  PubMed  CAS  Google Scholar 

  65. Belardinelli L, Isenberg G. Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 1983;53:287–297.

    PubMed  CAS  Google Scholar 

  66. Pelzer S, Shuba YM, Asai T, Codina J, Birnbaumer L, Mcdonald TF, Pelzer D. Membrane- delimited stimulation of heart cell calcium current by β-adrenergic signal-transducing G s protein. Am J Physiol____259:H264–H267.

    Google Scholar 

  67. Lee HC, Smith N, Mohabir R, Clusin WT. Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 1987;84:7793–7797.

    Article  PubMed  CAS  Google Scholar 

  68. Spurgeon HA, Stern MD, Baartz G, Raffaeli R, Hansford RG, Talo A, Lakatta EG, Capogrossi MC. Simultaneous measurement of Ca, contraction and potential in cardiac myocytes. Am J Physiol 1990;258:H574–H586.

    PubMed  CAS  Google Scholar 

  69. Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC. Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 1986;18:691–710.

    Article  PubMed  CAS  Google Scholar 

  70. Fenton RA, Dobson JG Jr. Measurement by fluorescence of interstitial adenosine levels in normoxic, hypoxic, and ischemic perfused rat hearts. Circ Res 1987;60:177–184.

    PubMed  CAS  Google Scholar 

  71. Dobson JG Jr, Schrader J. Role of extracellular and intracellular adenosine in the attenuation of catecholamine evoked responses in guinea pig heart. J Mol Cell Cardiol 1984;16:813–822.

    Article  PubMed  CAS  Google Scholar 

  72. Fenton RA, Dobson JG Jr. Fluorometric quantitation of adenosine concentration in small samples of extracellular fluid. Anal Biochem 1992;207:134–141.

    Article  PubMed  CAS  Google Scholar 

  73. Fenton RA, Tsimikas S, Dobson JG Jr. Influence of β-adrenergic stimulation and contraction frequency on rat heart interstitial adenosine. Circ Res 1990;66:457–468.

    PubMed  CAS  Google Scholar 

  74. DeDeckere EAM, Ten Hoor P. A modified Langendorff technique for metabolic investigations. Pflugers Arch 1977;370:103–105.

    Article  CAS  Google Scholar 

  75. Gidday JM, Kaiser DM, Rubio R, Berne RM. Heterogeneity and sampling volume dependence of epicardial adenosine concentrations. J Mol Cell Cardiol 1992;24:351–364.

    Article  PubMed  CAS  Google Scholar 

  76. Heller LJ, Mohrman DE. Estimates of interstitial adenosine from surface exudates of isolated rat hearts. J Mol Cell Cardiol 1988;20:509–523.

    Article  PubMed  CAS  Google Scholar 

  77. Hanley F, Messina LM, Baer RW, Uhlig PN, Hoffman JIE. Direct measurement of left ventricular interstitial adenosine. Am J Physiol 1983;245:H327–H335.

    PubMed  CAS  Google Scholar 

  78. Gidday JM, Hill HE, Rubio R, Berne RM. Estimates of left ventricular interstitial fluid adenosine during catecholamine stimulation. Am J Physiol 1988;254:H207–H216.

    PubMed  CAS  Google Scholar 

  79. Van Wylen DGL, Willis J, Sodhi J, Weiss RJ, Lasley RD, Mentzer RM. Cardiac microdialysis to estimate interstitial adenosine and coronary blood flow. Am J Physiol 1990;258:H1642–H1649.

    PubMed  Google Scholar 

  80. Fenton RA, Dobson JG Jr. Hypoxia enhances isoproterenol-induced increase in heart interstitial adenosine, depressing β-adrenergic contractile responses. Circ Res 1993;72:571–578.

    PubMed  CAS  Google Scholar 

  81. Dobson JG Jr, Ordway RW, Fenton RA. Endogenous adenosine inhibits catecholamine contractile responses in normoxic hearts. Am J Physiol 1986;251:H455–H462.

    PubMed  CAS  Google Scholar 

  82. Sato H, Hori M, Kitakaze M, Takashima S, Inoue M, Kitabatake A, Kamadu, T. Endogenous adenosine blunts β-adrenoceptor-mediated inotropic response in hypoperfused canine myocardium. Circulation 1992;85:1594–1603.

    PubMed  CAS  Google Scholar 

  83. Lai W-T, Wu S-N, Sung RJ. Negative dromotropism of adenosine under beta- adrenergic stimulation with isoproterenol. Am J Cardiol 1992;70:1427–1431.

    Article  PubMed  CAS  Google Scholar 

  84. Seitelberger R, Schutz W, Schlappack O, Raberger G. Evidence against the adenosine- catecholamine antagonism under in vivo conditions. Naunyn-Schmiedeberg’s Arch Pharmacol 1984;325:234–239.

    Article  CAS  Google Scholar 

  85. Schipke J, Heusch G, Thamer V. Evidence against the adenosine-catecholamine antagonism in the canine heart in situ. Arzneim-Forsch 1987;37:1345–1347.

    CAS  Google Scholar 

  86. Meyer W, Nose M, Schmitz W, Scholz H. Adenosine and adenosine analogs inhibit phosphodiesterase activity in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 1984;328:207–209.

    Article  CAS  Google Scholar 

  87. Henrich M, Piper HM, Schrader J. Evidence for adenylate cyclase-coupled At-adenosine receptors on ventricular cardiomyocytes from adult rat and dog heart. Life Sci 1987;41:2381–2388.

    Article  PubMed  CAS  Google Scholar 

  88. Martens D, Lohse MJ, Schwabe U. 3H]-8-cyclopentyl-l,3-dipropylxanthine binding to A 1 adenosine receptors of intact ventricular myocytes. Circ Res 1988;63:613–620.

    PubMed  CAS  Google Scholar 

  89. Dobson JG Jr, Fenton RA. Adenosine inhibition of β-adrenergic induced responses in aged hearts. Am J Physiol 1993;265:H494–H503.

    PubMed  CAS  Google Scholar 

  90. Fenton RA, Galeckas K, Dobson JG Jr. Effect of adenosine pretreatment on reperfusion contractile depression and arrhythmias in the low-flow ischemic β-adrenergic stimulated heart (abstract). Drug Develop Res 1994;31:268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dobson, J.G. (1996). Adenosine and Adrenergic Mediated Effects in the Heart. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics