Skip to main content

Main Features of Meiosis

  • Chapter
Human Chromosomes
  • 140k Accesses

Abstract

Meiosis is the unique process by which haploid (n) germ cells are produced by two successive cell divisions without an intervening round of DNA replication (Fig. 9.1). This is one of the two key events in the alternation of the haploid and diploid phases of the human life cycle, the other being fusion of haploid egg and sperm (fertilization) to produce a diploid (2n) zygote. Two key features of the first meiotic division are close pairing of homologous chromosomes and their segregation to opposite poles of the meiotic spindle. The first meiotic division, MI, is called the reduction division, because it reduces the chromosome number from 2n to n. Sister chromatids separate from each other only at the second, or etfuational, meiotic division, Mil. This yields haploid cells that differentiate into ova in females and sperm in males.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bojko M (1985) Human meiosis. IX. Crossing over and chiasma formation in oocytes. Carlsberg Res Commun 50:43–72

    Article  Google Scholar 

  • Broman KW, Murray JC, Sheffield VC, et al. (1998) Comprehensive human genetic maps: individual and sex-specific variation. Am J Hum Genet 63:861–869

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Stivers DN, Daka R, et al. (1996) Segregation distortion of the CTG repeats at the myotonic dystrophy locus. Am J Hum Genet 59:109–118

    PubMed  CAS  Google Scholar 

  • Cheng EY, Chen Y-J, Gartier SM (1995) Chromosome pairing analysis of early oogenesis in human trisomy 18. Cytogenet Cell Genet 70:205–210

    Article  PubMed  CAS  Google Scholar 

  • Cheng EY, Chen Y-J, Bonnet G, et al. (1998) An analysis of meiotic pairing in trisomy 21 oocytes using fluorescent in situ hybridization. Cytogenet Cell Genet 80:48–53

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Rasmussen SW (1983) Human meiosis. VI. Crossing over in human spermatocytes. Carlsberg Res Commun 48:385–413

    Article  Google Scholar 

  • Hultén M (1974) Chiasma distribution at diakinesis in the normal human male. Hereditas 76:55–78

    Article  PubMed  Google Scholar 

  • ISCN (1995) An international system for human cytogenetic nomenclature. Mitelman F (ed) S Karger, Basel

    Google Scholar 

  • Jhanwar SC, Burns JP, Alonso ML, et al. (1982) Mid-pachytene chromomere maps of human autosomes. Cytogenet Cell Genet 33:240–248

    Article  PubMed  CAS  Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin: molecular and structural aspects. Cambridge University Press, Cambridge, pp 1–147

    Google Scholar 

  • Kugu K, Ratts VS, Piquette GN, et al. (1998) Analysis of apoptosis and expression of bcl-2 gene family members in the human and baboon ovary. Cell Death Differ 5:67–76

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Hultén MA (1985) Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet 49:189–201

    Article  PubMed  CAS  Google Scholar 

  • Luciani JM, Devictor M, Boue J, et al. (1978) The meiotic behavior of triploidy in a human 69,XXX fetus. Cytogenet Cell Genet 20:226–231

    Article  PubMed  CAS  Google Scholar 

  • Metzler-Guillemain C, Mignon C, Depetris D, et al. (1999) Bivalent 15 regularly associates with the sex vesicle in normal male meiosis. Chrom Res 7:369–378

    Article  PubMed  CAS  Google Scholar 

  • Mohrenweiser HW, Tsujimoto S, Gordon L, et al. (1998) Regions of sex-specific hypo-and hyper-recombination identified through integration of 180 genetic markers with the metric physical map of human chromosome 19. Genomics 47:153–162

    Article  PubMed  CAS  Google Scholar 

  • Motzkus D, Singh PB, Hoyer-Fender S (1999) M31, a murine homolog of Drosophila HPl, is concentrated in the XY body during spermatogenesis. Cytogenet Cell Genet 86:83–88

    Article  PubMed  CAS  Google Scholar 

  • Sagata N (1996) Meiotic metaphase arrest in animal oocytes: its mechanism and biological significance. Trends Cell Biol 6:22–28

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Eils R, Trelles-Sticken E, et al. (1998) Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase. J Cell Sci 111:2337–2351

    PubMed  CAS  Google Scholar 

  • Scherthan H, Weich S, Schwegler H, et al. (1996) Centromere and telomere movements during early meiotic prophase in mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134: 1109–1125

    Article  PubMed  CAS  Google Scholar 

  • Shimmin LC, Chang BH-J, Li W-H (1993) Male-driven evolution of DNA sequence. Nature 362:745–747

    Article  PubMed  CAS  Google Scholar 

  • Speed RM (1985) The meiotic stages in human foetal oocytes studied by light and electron microscopy. Hum Genet 69:69–75

    Article  PubMed  CAS  Google Scholar 

  • Speed RM, Chandley A (1990) Prophase of meiosis in human spermatocytes analysed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum Genet 84:547–554

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Vande Woude GF, Ikawa Y, et al. (1989) Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature 342:505–511

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464

    Article  PubMed  CAS  Google Scholar 

  • Wettstein D von, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). Main Features of Meiosis. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics