Skip to main content

In Situ Hybridization

  • Chapter
Human Chromosomes

Abstract

Afascinating property of DNA is the complementarity of the nucleotide bases in its two anti-parallel strands, with G always pairing with C and A always pairing with T. This does not involve strong covalent chemical bonds but weak hydrogen bonds. There are three hydrogen bonds between G-C pairs and two between A-T pairs, so strand separation is easier in AT-rich DNA than in GC-rich DNA. Mild heating breaks these hydrogen bonds and is one way to separate the two strands, called denaturation or dissociation. Reducing the temperature under the right salt conditions leads to renaturation (reassociation or reannealing) of the two strands by reconstitution of the hydrogen bonds. The rate of renaturation depends on the frequency of collision between complementary sequences, which depends on their concentration. The concentration and time required for renaturation determines the Cot value (concentration × time). If a high concentration of labeled probe DNA is used, hybridization to complementary nucleic acid sequences in the target preparation can be achieved in a reasonably short time. These properties of DNA are extremely important, because they make it possible to detect specific DNA sequences (such as genes) on a nitrocellulose filter (molecular hybridization) or in cytological preparations (in situ hybridization) by using labeled DNA or RNA probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonacci R, Marzella R, Finelli P, et al. (1995) A panel of subchromosomal painting libraries representing over 300 regions of the human genome. Cytogenet Cell Genet 68:25–32

    Article  PubMed  CAS  Google Scholar 

  • Bailey SM, Meyne J, Cornforth MN, et al. (1996) A new method for detecting pericentric inversions using COD-FISH. Cytogenet Cell Genet 75: 248–253

    Article  PubMed  CAS  Google Scholar 

  • Boggs BA, Chinault AC (1994) Analysis of replication timing of human X-chromosomal loci by fluorescence in situ hybridization. Proc Natl Acad Sci USA 91:6083–6087

    Article  PubMed  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Grebe TA, Guan X-Y, et al. (1997) Maternal balanced translocation leading to partial duplication of 4q and partial deletion of 1p in a son: cytogenetic and FISH studies using band-specific painting probes generated by chromosome microdissection. Am J Med Genet 71: 160–166

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Lichter P, Borden J, et al. (1988) Detection of chromosome aberrations in metaphase and interphase tumour cells by in situ hybridization using chromosome specific library probes. Hum Genet 80:235–246

    Article  PubMed  CAS  Google Scholar 

  • Cullen DF, Yip M-Y, Eyre HJ (1997) Rapid detection of euchromatin by Alu-PRINS: use in clinical cytogenetics. Chrom Res 5:81–85

    Article  Google Scholar 

  • DeCapoa A, Felli MP, Baldini A, et al. (1988) Relationship between the numbers and function of human ribosomal genes. Hum Genet 79:301–304

    CAS  Google Scholar 

  • Femino AM, Fay FS, Fogarty K, et al. (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  PubMed  CAS  Google Scholar 

  • Forozan F, Karhu R, Kononen J, et al. (1997) Genome screening by comparative genomic hybridization. Trends Genet 13:405–409

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Goldstein L, Tyler-Freer SE, et al. (1999) The timing of XIST replication: dominance of the domain. Hum Mol Genet 8:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Gläser B, Yen PH, Schempp W (1998) Fibre-FISH unravels apparently seven DAZ genes or pseudogenes clustered within a Y-chromosome region frequently deleted in azoospermic males. Chrom Res 6:481–486

    Article  PubMed  Google Scholar 

  • Gosden J, Lawson D (1994) Rapid chromosome identification by oligonucleotide-primed in situ DNA synthesis (PRINS). Hum Mol Genet 3: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Harper ME, Saunders GF (1984) Localization of single-copy genes on human chromosomes by in situ hybridization of 3H-probes and autoradiography. In: Sparkes RS, de la Cruz FF (eds) Research perspectives in cytogenetics. University Park Press, Baltimore, pp 117–133

    Google Scholar 

  • Knight SJL, Horsley SW, Regan R, et al. (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5:1–8

    PubMed  CAS  Google Scholar 

  • Kuwano A, Mutirangura A, Dittrich B, et al. (1992) Molecular dissection of the Prader-Willi/Angelman syndrome region (15q 11–13) by YAC cloning and FISH analysis. Hum Mol Genet 1:417–425

    Article  PubMed  CAS  Google Scholar 

  • Levy B, Gershin IF, Desnick RJ, et al. (1997) Characterization of a de novo unbalanced chromosome rearrangement by comparative genomic hybridization and fluorescence in situ hybridization. Cytogenet Cell Genet 76:68–71

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Ward DC (1990) Is non-isotopic in-situ hybridization finally coming of age? Nature 345:93–94

    Article  PubMed  CAS  Google Scholar 

  • Lüdecke H-J, Senger G, Claussen U, et al. (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338:348–350

    Article  PubMed  Google Scholar 

  • Mann SM, Burkin DJ, Grin DK, et al. (1997) A fast, novel approach for DNA fibre-fluorescence in situ hybridization. Chrom Res 5:145–147

    Article  PubMed  CAS  Google Scholar 

  • Müller S, O’Brien PCM, Ferguson-Smith MA, et al. (1997a) A novel source of highly specific chromosome painting probes for human karyotype analysis derived from primate homologues. Hum Genet 101:149–153

    Article  PubMed  Google Scholar 

  • Müller S, Rocchi M, Ferguson-Smith MA, et al. (1997b) Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization. Hum Genet 100:271–278

    Article  PubMed  Google Scholar 

  • Pinkel D, Landegent J, Collins C, et al. (1988) Fluorescent in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142

    Article  PubMed  CAS  Google Scholar 

  • Popp S, Jauch A, Schindler D, et al. (1993) A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones. Hum Genet 92:527–532

    Article  PubMed  CAS  Google Scholar 

  • Schröck E, du Manoir S, Veldman T, et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  PubMed  Google Scholar 

  • Selig S, Okumura K, Ward DC, et al. (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 11:1217–1225

    PubMed  CAS  Google Scholar 

  • Shiels C, Coutelle C, Huxley C (1997) Analysis of ribosomal and alphoid repetitive DNA by fiber-FISH. Cytogenet Cell Genet 76:20–22

    Article  PubMed  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherischia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Speicher MR, Ballard G, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Srivastava AK, Hagino Y, Schlessinger D, et al. (1993) Ribosomal DNA clusters in pulsed-field gel electrophoretic analysis of human acrocentric chromosomes. Mammal Genome 4:445–450

    Article  CAS  Google Scholar 

  • Torchia BS, Call LM, Migeon BR (1994) DNA replication analysis of FMRl, XIST, and factor 8C loci by FISH shows nontranscribed X-linked genes replicate late. Am J Hum Genet 55:96–104

    PubMed  CAS  Google Scholar 

  • Trask BJ (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet 7:149–154

    PubMed  CAS  Google Scholar 

  • Weier H-UG, Wang M, Mulliken JC, et al. (1995) Quantitative DNA fiber mapping. Hum Mol Genet 4:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Woodward K, Kendall E, Vetrie D, et al. (1998) Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH. Am J Hum Genet 63:207–217

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). In Situ Hybridization. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics