Skip to main content

Chemical Turing Patterns: A Model System of a Paradigm for Morphogenesis

  • Conference paper
Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

Abstract

The development of one- and two-dimensional Turing patterns characteristic of the chlorite-iodide-malonic acid/indicator reaction occurring in an open gel continuously fed unstirred reactor is investigated by means of various weakly nonlinear stability analyses applied to the appropriately scaled governing chlorine dioxide-iodine-malonic acid/indicator reaction-diffusion model system. Then the theoretical predictions deduced from these pattern formation studies are compared with experimental evidence relevant to the diffusive instabilities under examination. The latter consist of stripes, rhombic arrays of rectangles, and hexagonal arrays of spots, nets, or black-eyes. Here, starch, for the case of a Polyacrylamide gel, or the gel itself, for a polyvinyl alcohol gel, serves as the Turing pattern indicator. The main purpose of these analyses is to explain more fully the transition to such stationary symmetry-breaking structures when the malonic acid or iodine reservoir concentrations are varied.

This research was supported by National Science Foundation grant DMS-9531797 and the Institute for Mathematics and its Applications at the University of Minnesota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • M. Baker and W. Bridges (1948), Wild Animals of the World, Garden City Publishing, Garden City, N.Y.

    Google Scholar 

  • J. Boissonade, E. Dulos, and P. de Kepper (1995), Turing patterns: Myth to reality, in Chemical Waves and Patterns, R. Kapral and K. Showalter, eds., Kluwer, Dordrecht, pp. 221–268.

    Chapter  Google Scholar 

  • P. Borckmans, G. Dewel, A. Dewit, and D. Walgraef (1995), Turing bifurcations and pattern selection, in Chemical Waves and Patterns, R. Kapral and K. Showalter, eds., Kluwer, Dordrecht, pp. 323–363.

    Chapter  Google Scholar 

  • V. Castets, E. Dulos, J. Boissonade, and P. de Kepper (1990), Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64, pp. 2953–2956.

    Article  Google Scholar 

  • S.R. Coriell and G.B. Mcfadden (1993), Morphological stability in Handbook of Crystal Growth, Vol. 1, (Ed. D.T.J. Hurle), Elsevier, Amsterdam, pp. 785–858.

    Google Scholar 

  • M.C. Cross and P.C. Hohenberg (1993), Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, pp. 851–1112.

    Article  Google Scholar 

  • P. de Kepper, V. Castets, E. Dulos, and J. Boissonade (1991), Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica, 49D, pp. 161–169.

    Google Scholar 

  • V. Dufiet and J. Boissonade (1992), Conventional and unconventional Turing patterns, J. Chem. Phys., 96, pp. 664–672.

    Article  Google Scholar 

  • A.A. Golovin, A.A. Nepomnyashchy, and L.M. Pismen (1994), Pattern formation in large-scale Marangoni convection with deformable interface, preprint.

    Google Scholar 

  • M.D. Graham, I.G. Kevrekidis, K. Asakura, J. Lauterbach, K. Krischer, H.-H. Rotermund, and G. Ertl (1994), Effects of boundaries on pattern formation: Catalytic oxidation of CO on platinum, Science, 264, pp. 80–82.

    Article  Google Scholar 

  • G.H. Gunaratne, Q. Ouyang, and H.L. Swinney (1994), Pattern formation in the presence of symmetries, Phys. Rev. E, 50, pp. 2802–2820.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Guslander and R.J. Field (1991), Modeling of an observed Turing structure in the ClO 2 -I -Malonic Acid system, Int. J. Bifurcation and Chaos, 1, pp. 929–931.

    Article  MATH  Google Scholar 

  • L.G. Harrison (1993), Kinetic Theory of Living Patterns, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • R.B. Hoyle, G.B. Mcfadden, and S.H. Davis (1995), Pattern selection with anisotropy during directional solidification, Appl. Math. Tech., Report No. 9404, Northwestern University.

    Google Scholar 

  • C.B. Huffaker, K.P. Shea, and S.G. Herman (1963), Experimental studies on predation (III). Complex dispersion and levels of food in an acarine predator-prey interaction, Hilgardia, 34, pp. 305–330.

    Google Scholar 

  • O. Jensen, E. Mosekilde, P. Borckmans, and G. Dewel (1996), Computer Simulation of Turing structures in the chlorite-iodide-malonic acid system, Phys. Scripta, 53, pp. 243–251.

    Article  Google Scholar 

  • O. Jensen, V.O. Pannbacker, G. Dewel, and P. Borckmans (1993), Subcriticai transition to Turing structures, Phys. Lett A, 179, pp. 91–96.

    Article  Google Scholar 

  • P. Kareiva and G.M. Odell (1987), Swarms of predators exhibit “prey taxis” if individual predators use area search, Am. Nat., 130, pp. 233–270.

    Article  Google Scholar 

  • S. Kondo and R. Asai (1995), A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376, pp. 765–768.

    Article  Google Scholar 

  • R. Kuske and B.J. Matkowsky (1994), On roll, square, and hexagonal cellular flames, Euro. Jnl. Appl. Math., 5, pp. 65–93.

    MATH  Google Scholar 

  • E.A. Kuznetsov and M.D. Spektor (1976), Existence of a hexagonal relief on the surface of a dielectric fluid in an external electric field, Sov. Phys. JETP, 44, pp. 136–141.

    Google Scholar 

  • I. Lengyel and I.R. Epstein (1991), Modeling of Turing structures in the chloriteiodide-malonic acid-starch reaction system, Science, 251, pp. 650–652.

    Article  Google Scholar 

  • — (1992), A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc. Natl. Acad. Sci. USA, 89, pp. 3977–3979.

    Article  Google Scholar 

  • — (1995), The chemistry behind the first experimental chemical examples of Turing patterns, in Chemical Waves and Patterns, R. Kapral and K. Showalter, eds., Kluwer, Dordrecht, pp. 297–322.

    Google Scholar 

  • I. Lengyel, S. Kádár, and I.R. Epstein (1992), Quasi-two-dimensional Turing patterns in an imposed gradient, Phys. Rev. Lett., 69, pp. 2729–2732.

    Article  Google Scholar 

  • — (1993), Transient Turing structures in a gradient-free closed system, Science, 259, pp. 493–495.

    Article  Google Scholar 

  • I. Lengyel, G. Rábai, and I.R. Epstein (1990a), Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid, J. Amer. Chem. Soc., 112, pp. 4606–4607.

    Article  Google Scholar 

  • — (1990b), Experimental and modeling study of oscillations in the chlorine dioxideiodine-malonic acid reaction, J. Amer. Chem. Soc., 112, pp. 9104–9110.

    Article  Google Scholar 

  • S.A. Levin and L.A. Segel (1976), Hypothesis for origin of planktonic patchiness, Nature, 259, p. 659.

    Article  Google Scholar 

  • H. Meinhardt (1995), Dynamics of stripe formation, Nature, 376, pp. 722–723.

    Article  Google Scholar 

  • L.R. Morris and W.C. Winegard (1969), The development of cells during the solidification of a dilute Pb-Sb alloy, J. Crystal Growth, 5, pp. 361–375.

    Article  Google Scholar 

  • J.D. Murray (1989), Mathematical Biology, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • — (1990), Discussion: Developmental biology: Turing theory of morphogenesis — its influence on modelling biological pattern and form, Bull. Math. Biol., 52, pp. 119–152.

    Google Scholar 

  • C. Niehrs, H. Steinbeisser, and E.M. de Robertis (1994), Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid, Science, 263, pp. 817–820.

    Article  Google Scholar 

  • Z. Noszticzius, Q. Ouyang, W.D. McCormick, and H.L. Swinney (1992), Effect of Turing pattern indicators on CIMA oscillators, J. Phys. Chem., 96, pp. 6302–6307.

    Article  Google Scholar 

  • Q. Ouyang, G.H. Gunaratne, and H.L. Swinney (1993), Rhombic patterns: Broken hexagonal symmetries, Chaos, 3, pp. 707–711.

    Article  Google Scholar 

  • Q. Ouyang, R. Li, G. Li, and H.L. Swinney (1995), Dependence of Turing pattern wavelength on diffusion rate, J. Chem. Phys., 102, pp. 2551–2555.

    Article  Google Scholar 

  • Q. Ouyang, Z. Noszticzius, and H.L. Swinney (1992), Spatial bistability of two-dimensional Turing patterns in a reaction-diffusion system, J. Chem. Phys., 96, pp. 6773–6776.

    Google Scholar 

  • Q. Ouyang and H.L. Swinney (1991a), Transition from a uniform state to hexagonal and striped Turing patterns, Nature, 352, pp. 610–612.

    Article  Google Scholar 

  • — (1991b), Transition to chemical turbulence, Chaos, 1, pp. 411–420.

    Article  MATH  Google Scholar 

  • — (1995), Onset and beyond Turing pattern formation, in Chemical Waves and Patterns, R. Kapral and K. Showalter, eds., Kluwer, Dordrecht, pp. 269–295.

    Chapter  Google Scholar 

  • J.E. Pearson (1992), Pattern formation in a (2 + 1)-species activator-inhibitor-immobilizer system, Physica A, 188, pp. 178–189.

    Article  Google Scholar 

  • A. Rovinsky and M. Menzinger (1992), Interaction of Hopf and Turing bifurcations in chemical systems, Phys. Rev. A, 46, pp. 6315–6322.

    Article  MathSciNet  Google Scholar 

  • J. Schnackenberg (1979), Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81, pp. 389–400.

    Article  Google Scholar 

  • L.A. Segel (1965), The nonlinear interaction of a finite number of disturbances in a layer of fluid heated from below, J. Fluid Mech., 21, pp. 359–384.

    Article  MathSciNet  MATH  Google Scholar 

  • L.A. Segel and J.L. Jackson (1972), Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37, pp. 545–592.

    Article  Google Scholar 

  • L.A. Segel and S.A. Levin (1976), Applications of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions in Topics in Statistical Mechanics and Biophysics: A Memorial to Julius L. Jackson, AIP Conf. Proc. No. 27, R.A. Piccirelli, ed., Amer. Inst. Phys., New York, pp. 123–152.

    Google Scholar 

  • R. Sriranganathan, D.J. Wollkind, and D.B. Oulton (1983), A theoretical investigation of the development of interfacial cells during the solidification of a dilute binary alloy: Comparison with the experiments of Morris and Winegard, J. Crystal Growth, 62, pp. 265–283.

    Article  Google Scholar 

  • L.E. Stephenson and D.J. Wollkind (1995), Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems, J. Math. Biol., 33, pp. 771–815.

    Article  MathSciNet  MATH  Google Scholar 

  • A.M. Turing (1952), The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond., B237, pp. 37–72.

    Google Scholar 

  • D. Walgraef (1997), Spatio-Temporal Pattern Formation, Springer-Verlag, New York.

    Book  Google Scholar 

  • D.J. Wollkind (1986), A new prototype problem for nonlinear stability theory: Plane-front alloy solidification versus free-surface Bénard convection in Mathematics Applied to Fluid Mechanics and Stability, J.E. Flaherty and D.A. Drew, eds., SIAM, Philadelphia, pp. 205–217.

    Google Scholar 

  • D.J. Wollkind, V.S. Manoranjan, and L. Zhang (1994), Weakly nonlinear stability analyses of prototype reaction-diffusion model equations, SIAM Review, 36, pp. 176–214.

    Article  MathSciNet  MATH  Google Scholar 

  • D.J. Wollkind, R. Sriranganathan, and D.B. Oulton (1984), Interfacial patterns during plane front alloy solidification, Physica, 12D, pp. 215–240.

    Google Scholar 

  • D.J. Wollkind and L.E. Stephenson (2000), Chemical Turing pattern formation analyses: Comparison of theory with experiment, SIAM J. Appl. Math., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Wollkind, D.J., Stephenson, L.E. (2001). Chemical Turing Patterns: A Model System of a Paradigm for Morphogenesis. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics