Skip to main content

Gibbs Free Energies of Formation for Bayerite, Nordstrandite, A1(OH)2+, and A1(OH)2 +, Aluminum Mobility, and the Formation of Bauxites and Laterites

  • Chapter
Advances in Physical Geochemistry

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 2))

Abstract

A knowledge of the low-temperature hydrolysis of aqueous aluminum solutions is important because of the role of aluminum in soil formation, because of the use of aluminum in the elimination of colloids and organic matter through flocculation and in other water treatment processes, and to improve the general analytical chemistry of aluminum and the processes for commercial aluminum extraction. Schoen and Roberson (1970) have stated that “our principal gaps in understanding the geochemistry of aluminum arise from the lack of detailed knowledge of the controls on solubility as well as the kinds and amounts of substances in solution. In addition, the aluminous solids that precipitate from supersaturated solutions must be adequately characterized.” The purpose of this discussion is the development of a model of the processes that control the low-temperature aqueous aluminum system and, although the problems cited by Schoen and Roberson are not entirely resolved, to review a portion of the vast amount of research gathered during the last two decades that has greatly improved our knowledge of the factors controlling the geochemistry of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, V. T. (1952) Pétrographie relations in some typical bauxite and diaspore deposits, Geol. Soc. Amer. Bull. 63, 649–688.

    Article  Google Scholar 

  • Baes, C. F., Jr., and Mesmer, R. E. (1976) The Hydrolysis of Cations. Interscience, New York.

    Google Scholar 

  • Barnhisel, R. I., and Rich, C. I. (1965) Gibbsite, bayerite, and norstrandite formation as affected by anions, pH and mineral surfaces, Soil Sci. Soc. Amer. Proc. 29, 531–534.

    Article  Google Scholar 

  • Bates, T. F. (1962) Halloysite and gibbsite formation in Hawaii, Clays Clay Mineral. 9, 315–328.

    Article  Google Scholar 

  • Brosset, C. (1952) On the reaction of the aluminum ion with water, Aeta Chem. Scand. 6, 910–940.

    Article  Google Scholar 

  • Busenberg, E. (1978) The products of the interaction of feldspars with aqueous solutions at 25°C, Geochim. Cosmochim. Acta 42, 1679–1686.

    Article  Google Scholar 

  • Busenberg, E., and Clemency, C. V. (1976) The dissolution kinetics of feldspars at 25°and 1 atm CO2 partial pressure, Geochim. Cosmochim. Acta 40, 41–49.

    Article  Google Scholar 

  • Bye, G. C, and Robinson, J. G. (1964) Crystallization processes in aluminum hydroxide gels, Kolloid-Z.Z. Polym. 198, 53–60.

    Article  Google Scholar 

  • Calvet, E., Thibon, H., Maillard, A., and Boivinet, P. (1950) Sodium aluminate solutions and the decomposition of these solutions, Soc. Chim. France Bull., 1308–1312.

    Google Scholar 

  • Carreira, L. A., Maroni, V. A., Swaine, J. W., Jr., and Plumb, R. (1966) Raman and infrared spectra and structures of the aluminate ions, J. Chem. Phys. 45, 2216–2220.

    Article  Google Scholar 

  • De Kimpe, C, Gastuche, M. C, and Brindley, G. W. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation, Amer. Mineral. 46, 1370–1381.

    Google Scholar 

  • Dibrov, I. A., Mal’tsev, G. Z., and Mashovets, V. P. (1964) Vapor pressure of sodium hydroxide and sodium aluminate solutions of a wide concentration range at 25-350°, Zh. Prikl. Khim. 37, 1920–1929.

    Google Scholar 

  • Evans, L. T., and Russell, E. W. (1959) The adsorption of humic and fulvic acids by clays, J. Soil Sci. 10, 119–132.

    Article  Google Scholar 

  • Frink, C. R., and Peech, M. (1962) The solubility of gibbsite in aqueous solutions and soil extracts, Soil Sci. Soc. Amer. Proc. 26, 346–347.

    Article  Google Scholar 

  • Frink, C. R., and Peech, M. (1963) Hydrolysis of the aluminum ion in dilute aqueous solutions, Inorg. Chem. 2, 473–478.

    Article  Google Scholar 

  • Fripiat, J. J., and Pennequin, M. (1965) Modification of the composition and molecular weight of dialysis-purified iron and aluminum hydroxides, Soc. Chim. France Bull, 1655–1660.

    Google Scholar 

  • Gastuche, M. C, and Herbillon, A. (1962) Etude des gels d’alumine: cristallisation en milieu desionise, Soc. Chim. France Bull, 1404–1412.

    Google Scholar 

  • Gayer, H., Thompson, L. C, and Zajicek, O. T. (1958) The solubility of aluminum hydroxide in acidic and basic media at 25°C, Can. J. Chem. 36, 1268–1271.

    Article  Google Scholar 

  • Geiling, S., and Glocker, R. (1943) Atomic arrangement in A1(OH)3 gel, Z. Elektrochem. 49, 269–273.

    Google Scholar 

  • Glastonbury, J. R. (1969) Nature of sodium aluminate solutions, Chem. Ind. (London) 5, 121–125.

    Google Scholar 

  • Goldberg, R., and Loughnan, F. C. (1977) Dawsonite, alumohydrocalcite, nordstran-dite and gorceixite in Permian marine strata of the Sydney Basin, Australia, Sedimentology 24, 565–579.

    Article  Google Scholar 

  • Goldsmith, J. R. (1949) Some aspects of the system NaAlSiO4-CaO-A12O3, J. Geology 59, 19–31.

    Google Scholar 

  • Gordon, M., Jr., Tracey, J. I., Jr., and Ellis, M. W. (1958) Geology of the Arkansas bauxite region, U.S. Geol. Survey Prof. Paper No. 299.

    Google Scholar 

  • Hathaway, J. C, and Schlanger, S. (1965) Nordstrandite (A12O3 ∙ 3H2O) from Guam, Amer. Mineral 50, 1029–1037.

    Google Scholar 

  • Hauschild, U. (1963) Uber nordstrandite, γA1(OH)3, Z. Anorg. Allg. Chem. 324, 15–30.

    Article  Google Scholar 

  • Helgeson, H. C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations, Geochim. Cosmochim. Acta 32, 853–877.

    Article  Google Scholar 

  • Helgeson, H. C. (1971) Kinetics of mass transfer among silicates and aqueous solutions, Geochim. Cosmochim. Acta 35, 421–469.

    Article  Google Scholar 

  • Hem, J. D., and Roberson, (1967) Form and stability of aluminum hydroxide complexes in dilute solution, U.S. Geol. Surv. Water Supply Paper No. 1827-A.

    Google Scholar 

  • Hem, J. D., Roberson, C. E., Laird, J., and Polzer, W. L. (1973) Chemical interactions of aluminum with aqueous silica at 25°C, U.S. Geol. Survey Water-Supply Paper No. 1827-E.

    Google Scholar 

  • Hemingway, B. S., and Robie, R. A. (1977a) Enthalpies of formation of low albite (NaAlSi3O8), gibbsite (A1(OH)3), and NaAlO2; revised values for ΔH ΰ f, 298 and ΔGΰ f, 298 of some aluminosilicate minerals, U.S. Geol. Surv. J. Res. 5, 413–429.

    Google Scholar 

  • Hemingway, B. S., and Robie, R. A. (1977b) The entropy and Gibbs free energy of formation of the aluminum ion, Geochim. Cosmochim. Acta 41, 1402–1404.

    Article  Google Scholar 

  • Hemingway, B. S., Robie, R. A., and Kittrick, J. A. (1978) Revised values for the Gibbs free energy of formation of [Al(OH) 4aq], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 and 1 bar, and the heats of solution of several gibbsite samples, Geochim. Cosmochim. Acta 42, 1533–1543.

    Article  Google Scholar 

  • Hemley, J. J., Montoya, J. W., Marinenko, J. W., and Luce, R. W. (1980) Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/ mineralization processes, Econ. Geol. 75, 210–228.

    Article  Google Scholar 

  • Hsu, P. H. (1967) Effects of salts on the formation of bayerite versus pseudoboehmite, Soil Sci. 103, 101–110.

    Article  Google Scholar 

  • Hsu, P. H. (1977) Aluminum hydroxides and oxyhydroxides, in Minerals in Soil Environments, edited by J. B. Dixon and S. B. Weed, Chap. 4, pp. 99–143. Soil Science Society of America, Madison, Wisc.

    Google Scholar 

  • Hsu, P. H., and Wang, M. K. (1980) Crystallization of goethite and hematite at 70°C, Soil Sci. Soc. Amer. J. 44, 143–149.

    Article  Google Scholar 

  • Hückel, W. (1951) Structural Chemistry of Inorganic Compounds. Elsevier, Amsterdam.

    Google Scholar 

  • La Iglesia Fernandez, A., and Martin Vivaldi, J. L. (1973) A contribution to the synthesis of kaolinite. Internat. Clay Conf., 1972, Division de Ciencias, C.S.I.C. Madrid, Spain, Proc, pp. 173-185.

    Google Scholar 

  • Her, R. K. (1973) Effect of adsorbed alumina on the solubility of amorphous silica in water. J. Colloid Interface Sci. 43, 399–408.

    Article  Google Scholar 

  • Kittrick, J. A. (1966) The free energy of formation of gibbsite and Al(OH) 4 from solubility measurements, Soil Sci. Soc. Amer. Proc. 30, 595–598.

    Article  Google Scholar 

  • Kittrick, J. A. (1980) Gibbsite and kaolinite solubilities by immiscible displacement of equilibrium solutions, Soil Sci. Soc. Amer. J. 44, 139–142.

    Article  Google Scholar 

  • Kwong, F. Ng Kee, and Huang, T. M. (1979) The relative influence of low-molecular-weight, complexing organic acids on the hydrolysis and precipitation of aluminum, Soil Sci. 128, 337–342.

    Article  Google Scholar 

  • Laves, F. (1952) Phase relations of the alkali feldspars. I. Introductory remarks, J. Geology 60, 436–450.

    Article  Google Scholar 

  • Linares, J., and Huertas, F. (1971) Kaolinite: synthesis at room temperature, Science 171, 896–897.

    Article  Google Scholar 

  • Lind, J., and Hem, J. D. (1975) Effects of organic solutes on chemical reactions of aluminum, U.S. Geol. Surv. Water-Supply Paper No. 1827-G.

    Google Scholar 

  • Lippincott, E. R., Psellos, J. A., and Tobin, M. (1952) Raman spectra and structures of aluminate and zincate ions, J. Chem. Phys. 20, 536.

    Article  Google Scholar 

  • Mal’tsev, G. Z., and Mashovets, V. P. (1965) Heat capacity of sodium aluminate solutions at 25-90°, Zh. Prikl. Khim. 38, 92–99.

    Google Scholar 

  • Mal’tsev, G. Z., Malinin, G. V., and Mashovets, V. P. (1965) Structure of aluminate solutions, Zh. Strukt. Khim. 6, 378–383.

    Google Scholar 

  • May, H. M., Helmke, P. A., and Jackson, M. L. (1979) Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solutions at 25 °C, Geochim. Cosmochim. Acta 43, 861–868.

    Article  Google Scholar 

  • Mesmer, R. E., and Baes, F., Jr. (1971) Acidity measurements at elevated temperatures. V. Aluminum ion hydrolysis, Inorg. Chem. 10, 2290–2296.

    Article  Google Scholar 

  • Moolenaar, R. J., Evans, J. C, and McKeener, L. D. (1970) The structure of the aluminate ion in solutions at high pH, J. Phys. Chem. 74, 3629–3636.

    Article  Google Scholar 

  • Mubarak, A., and Olsen, R. A. (1976) An improved technique for measuring soil pH. Soil Sci. Soc. Amer. J. 40, 880–882.

    Article  Google Scholar 

  • Naray-Szabo, I., and Peter, E. (1967) Nachweis von Nordstrandit und Bayerit in ungarischen Zeigeltonen, Acta Geol. Hung. 11, 375–377.

    Google Scholar 

  • Norton, S. A. (1973) Latérite and bauxite formation, Econ. Geol. 68, 353–361.

    Article  Google Scholar 

  • Ostwald, W. (1897) Studien über die bildung und Umwandlung fester köper, Z. Physik. Chem. 22, 289–330.

    Google Scholar 

  • Paces, T. (1978) Reversible control of aqueous aluminum and silica during the irreversible evolution of natural waters, Geochim. Cosmochim. Acta 42, 1487–1493.

    Article  Google Scholar 

  • Parks, G. A. (1972) Free energies of formation and aqueous solubilities of aluminum hydroxides and oxide hydroxides at 25°C, Amer. Mineral. 57, 1163–1189.

    Google Scholar 

  • Patterson, S. H., and Roberson, C. E. (1961) Weathered basalt in the eastern part of Kauai, Hawaii, U.S. Geol. Surv. Prof. Paper No. 424-C, C195-C198.

    Google Scholar 

  • Raupach, M. (1963) Solubility of simple aluminum compounds expected in soils— I. Hydroxides and oxyhydroxides, Austr. J. Soil Res. 1, 28–35.

    Article  Google Scholar 

  • Rooksby, H. P. (1961) Oxides and hydroxides of aluminum and iron, in The X-Ray Identification and Crystal Structures of Clay Minerals, edited by G. Brown, pp. 354–392. Mineral Society, London.

    Google Scholar 

  • Ross, G. J., and Turner, R. C. (1971) Effect of different anions on the crystallization of aluminum hydroxide in partially neutralized aqueous aluminum salt systems, Soil Sci. Soc. Amer. Proc. 35, 389–392.

    Article  Google Scholar 

  • Russell, A. S., Edwards, J. D., and Taylor, C. S. (1955) Solubility of hydrated aluminas in NaOH solutions, Am. Inst. Mining Metall. Eng. Trans., J. Metals. 203, 1123–1128.

    Google Scholar 

  • Schnitzer, M., and Desjardins, J. G. (1969) Chemical characteristics of a natural soil leachate from a humic podzol, Can. J. Soil Sci. 49, 151–158.

    Article  Google Scholar 

  • Schnitzer, M., and Hansen, E. H. (1970) Organo-metallic interactions in soils: 8. An evaluation of methods for the determination of stability constants for metal-fulvic acid complexes, Soil Sci. 109, 333–340.

    Article  Google Scholar 

  • Schnitzer, M., and Kodama, H. (1977) Reactions of minerals with soil humic substances, in Minerals in Soil Environments, edited by J. B. Dixon and S. B. Weed, Chap. 21, pp. 741–770. Soil Science Society of America, Madison, Wisc.

    Google Scholar 

  • Schnitzer, M., and Skinner, S. I. (1965) Organo-metallic interactions in soils: 4. Carboxyl and hydroxyl groups in organic matter and metal retention, Soil Sci. 99, 278–284.

    Article  Google Scholar 

  • Schoen, R., and Roberson, C. E. (1970) Structures of aluminum hydroxide and geochemical implications, Amer. Mineral. 55, 43–77.

    Google Scholar 

  • Sharma, S. K., and Kashyap, S. C. (1972) Ionic interactions in alkali metal hydroxide solutions-A Raman spectral investigation, Inorg. Nucl. Chem. 34, 3623–3630.

    Article  Google Scholar 

  • Sherman, G. D., Cady, J. G., Ikawa, H., and Blumsberg, N. E. (1967) Genesis of the bauxitic Hailu soils, Hawaii Agric. Exp. Stn. Tech. Bull. No. 56.

    Google Scholar 

  • Sillén, L. G., and Martell, A. E. (1964) Stability constants of metal ion complexes, Chem. Soc. (London) Spec. Pub. 17.

    Google Scholar 

  • Singh, S. S. (1974) The solubility product of gibbsite at 15, 25, and 35°C, Soil Sci. Soc. Amer. Proc. 38, 415–417.

    Article  Google Scholar 

  • Smith, R. W., and Hem, J. D. (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions, U.S. Geol. Surv. Water-Supply Paper No. 1827-D.

    Google Scholar 

  • Turner, R. C, and Ross, G. J. (1970) Conditions in solution during the formation of gibbsite in dilute Al salt solutions. 4. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation, Can. J. Chem. 48, 723–729.

    Article  Google Scholar 

  • Valeton, I. (1972) Bauxites. Elsevier, Amsterdam.

    Google Scholar 

  • Violante, A., and Violante, P. (1980) Influence of pH, concentration, and chelating power of organic anions on the synthesis of aluminum hydroxides and oxyhydrox-ides, Clays Clay Minerals 28, 425–435.

    Article  Google Scholar 

  • Wada, K. (1977) Allophane and imogolite, in Minerals in Soil Environments, edited by J. B. Dixon and S. B. Weed, Chap. 16, pp. 603–638. Soil Science Society of America, Madison, Wisc.

    Google Scholar 

  • Wall, J. R. D., Wolfenden, E. Beard, E. H., and Dean, T. (1952) Norstrandite in soil from West Sarawak, Borneo, Nature 196, 261–265.

    Google Scholar 

  • Willstätter, R., and Kraut, H. (1924) Hydrates and hydrogels. V. The hydroxides and their hydrates in different alumina gels, Ber. 57B, 1082–1901.

    Google Scholar 

  • Wolfenden, E. B. (1961) Bauxite in Sarawak, Econ. Geol. 56, 972–981.

    Article  Google Scholar 

  • Wollast, R. (1967) Kinetics of the alteration of K-feldspar in buffered solutions at low temperature, Geochim. Cosmochim. Acta 31, 635–648.

    Article  Google Scholar 

  • Young, A., and Stephen, I. (1965) Rock weathering and soil formation on high-altitude plateaus of Malawi, J. Soil Sci. 16, 322–333.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hemingway, S. (1982). Gibbs Free Energies of Formation for Bayerite, Nordstrandite, A1(OH)2+, and A1(OH)2 +, Aluminum Mobility, and the Formation of Bauxites and Laterites. In: Saxena, S.K. (eds) Advances in Physical Geochemistry. Advances in Physical Geochemistry, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5683-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5683-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5685-4

  • Online ISBN: 978-1-4612-5683-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics