Skip to main content

Associative Binding and Segregation in a Network of Spiking Neurons

  • Chapter
Models of Neural Networks

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Synopsis

A model of an associative network of spiking neurons (the Spike Response Model) with stationary states, globally locked oscillations, and weakly locked oscillatory states is presented and analyzed. The network is close to biology in the following sense. First, the neuron spikes and our model includes an absolute refractory period after each spike. Second, we consider a distribution of axonal delay times. Finally, we describe synaptic signal transmission by excitatory and inhibitory potentials (EPSP and IPSP) with a realistic shape, that is, through a response kernel. The patterns have been learned by an asymmetric Hebbian rule that can handle a low activity which may vary from pattern to pattern. During retrieval of a pattern all active neurons exhibit periodic spike bursts which may or may not be synchronized ( “locked” ) into a coherent oscillation. We derive an analytical condition of locking and calculate the period of collective activity during oscillatory retrieval. It is argued that in a biological network an intermediate scenario of “weak locking” is most likely. In this regime, we discuss applications to feature linking and pattern segmentation as well as the problem of context sensitive binding that can be solved in a layered structure including feedback. In addition, we address the question of synchronization between the two hemispheres of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott LF (1991) Realistic synaptic inputs for model neural networks. Network 2:245–258

    Article  MATH  Google Scholar 

  2. Amit DJ (1989) Modeling Brain Function (Cambridge University Press, Cambridge)

    MATH  Google Scholar 

  3. Amit DJ, Gutfreund H, Sompolinsky H (1985) Spin-glass models of neural networks. Phys. Rev. A 32:1007–1032

    Article  MathSciNet  ADS  Google Scholar 

  4. Amit DJ, Gutfreund H, Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann. Phys. (NY) 173:30–67

    Article  ADS  Google Scholar 

  5. Baird B (1986) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. Physica D 22:150–175

    Article  MathSciNet  Google Scholar 

  6. Bauer HU, Pawelzik K, Geisel T (1993) Emergence of transient oscillations in an ensemble of neurons. In: Proceedings of the ICANN′93, S. Gielen and B. Kappen (Eds.) (Springer, Berlin), pp. 136–141

    Google Scholar 

  7. Bauer HU, Pawelzik K (1993) Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly. Physica D, to appear

    Google Scholar 

  8. Bindman L, Christofi G, Murphy K, Nowicky A (1991) Long-term potenti-ation (LTP) and depression (LTD) in the neocortex and hippocampus: An overview. In: Aspects of synaptic transmission, T.W. Stone (Ed.) (Taylor Francis, London), Vol. 1, pp. 3–25

    Google Scholar 

  9. Brown TH (1994) Hebbian synaptic plasticity. This volume

    Google Scholar 

  10. Brown TH, Ganong AH, Kairiss EW, Keenan CL, Kelso SR (1989) Long-term potentation in two synaptic systems of the hippocampal brain slice. In: Neural Models of Plasticity, J.H. Byrne and W.O. Berry (Eds.) (Academic Press, San Diego), pp. 266–306

    Google Scholar 

  11. Buhmann J (1989) Oscillations and low firing rates in associative memory neural networks. Phys. Rev. A 40:4145–4148

    Article  MathSciNet  ADS  Google Scholar 

  12. Buhmann J, Schulten K (1986) Associative recognition and storage in a model network with physiological neurons. Biol. Cybern. 54:319–335

    Article  MATH  Google Scholar 

  13. Bush PC, Douglas RJ (1991) Synchronization of bursting action potential discharge in a model network of neocortical neurons. Neural Comput. 3:19–30

    Article  Google Scholar 

  14. Deppisch J, Bauer HU, Schillen T, König P, Pawelzik K, Geisel T (1993) Alternating oscillatory and stochastic states in a network of spiking neurons. Network 4:243–257

    Article  MATH  Google Scholar 

  15. Domany E, van Hemmen JL, Schulten K, Eds. (1991) Models of Neural Networks (Springer, Berlin)

    Google Scholar 

  16. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern. 60:121–130

    Article  Google Scholar 

  17. Eckhorn R, Obermueller A (1993) Single neurons are differently involved in stimulus-specific oscillations in cat visual cortex. Exp. Brain Res. 95:177–182

    Article  Google Scholar 

  18. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput. 2:293–307

    Article  Google Scholar 

  19. Ekeberg O, Wallen P, Lansner A, Traven H, Brodin L, Grillner S (1991) A computer based model for realistic simulations of neural networks. Biol. Cybern. 65:81–90

    Article  Google Scholar 

  20. Engel AK, König P, Kreiter K, Singer W (1991) Interhemispheric synchronization of oscillatory neural responses in cat visual cortex. Science 252:1177–1179

    Article  ADS  Google Scholar 

  21. Engel AK, König P, Singer W (1991) Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. U.S.A. 88:9136–9140

    Article  ADS  Google Scholar 

  22. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47

    Article  Google Scholar 

  23. Fuentes U (1993) Einfluß der Schicht-und Arealstruktur auf die Informationsverarbeitung im Cortex. Master’s thesis, Technische Universität München

    Google Scholar 

  24. Gerstner W, Ritz R, van Hemmen JL (1993) A biologically motivated and analytically soluble model of collective oscillations in the cortex I. Theory of weak locking. Biol. Cybern. 68:363–374

    Article  MATH  Google Scholar 

  25. Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time resolved excitation patterns. Biol. Cybern. 69:503–515

    MATH  Google Scholar 

  26. Gerstner W, van Hemmen JL (1992) Associative memory in a network of “spiking” neurons. Network 3:139–164

    Article  MATH  Google Scholar 

  27. Gerstner W, van Hemmen JL (1992) Universality in neural networks: The importance of the mean firing rate. Biol. Cybern. 67:195–205

    Article  MATH  Google Scholar 

  28. Gerstner W, van Hemmen JL (1993) Coherence and incoherence in a globally coupled ensemble of pulse emitting units. Phys. Rev. Lett. 71:312–315

    Article  ADS  Google Scholar 

  29. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  ADS  Google Scholar 

  30. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U.S.A. 86:1698–1702

    Article  ADS  Google Scholar 

  31. Hansel D, Sompolinski H (1992) Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68:718–721

    Article  ADS  Google Scholar 

  32. Hebb DO (1949) The Organization of Behavior (Wiley, New York)

    Google Scholar 

  33. van Hemmen JL, Gerstner W, Herz AVM, Kühn R, Sulzer B, Vaas M (1990) Encoding and decoding of patterns which are correlated in space and time. In: Konnektionismus in Artificial Intelligence und Kognitions-forschung, G. Dorffner (Ed.) (Springer, Berlin), pp. 153–162

    Google Scholar 

  34. van Hemmen JL, Gerstner W, Ritz R (1992) A “microscopic” model of collective oscillations in the cortex. In: Neural Network Dynamics, J.G. Taylor et al. (Eds.) (Springer, Berlin), pp. 250–257

    Google Scholar 

  35. van Hemmen JL, Grensing D, Huber A, Kühn R (1986) Elementary solution of classical spin glass models. Z. Phys. B 65:53–63

    Article  MathSciNet  ADS  Google Scholar 

  36. van Hemmen JL, Grensing D, Huber A, Kühn R (1988) Nonlinear neural networks I and II. J. Stat. Phys. 50:231–257 and 259-293

    Article  ADS  MATH  Google Scholar 

  37. van Hemmen JL, Kühn R (1986) Nonlinear neural networks. Phys. Rev. Lett. 57:913–916

    Article  ADS  Google Scholar 

  38. Herz AVM, Sulzer B, Kühn R, van Hemmen JL (1988) The Hebb rule: Representation of static and dynamic objects in neural nets. Europhys. Lett. 7:663–669

    Article  ADS  Google Scholar 

  39. Herz AVM, Sulzer B, Kühn R, van Hemmen JL (1989) Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol. Cybern. 60:457–467

    Article  MATH  Google Scholar 

  40. Hodgkin AL, Huxley AF (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London) 117:500–544

    Google Scholar 

  41. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79:2554–2558

    Article  MathSciNet  ADS  Google Scholar 

  42. Hopfield JJ (1984) Neurons with graded response have computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81:3088–3092

    Article  ADS  Google Scholar 

  43. Horn D, Sagi D (1991) Parallel activation of memories in an oscillatory neural network. Neural Comput. 3:31–43

    Article  Google Scholar 

  44. Horn D, Sagi D, Usher M (1991) Segmentation, binding, and illusory conjunctions. Neural Comput. 3:510–525

    Article  Google Scholar 

  45. Horn D, Usher M (1989) Neural networks with dynamical thresholds. Phys. Rev. A 40:1036–1040

    Article  ADS  Google Scholar 

  46. Horn D, Usher M (1992) Oscillatory model of short-term memory. In: Advances in Neural Information Processing Systems 4, J.E. Moody et al. (Eds.) (Morgan Kaufmann, San Mateo, CA), pp. 125–132

    Google Scholar 

  47. Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable CellsElectric Current Flow in Excitable Cells (Clarendon Press, Oxfor

    Google Scholar 

  48. Kitajima T, Hara K (1990) A model of the mechanisms of long-term poten-tiation in the hippocampus. Biol. Cybern. 64:33–39

    Article  MATH  Google Scholar 

  49. König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses. I. Synchronization. Neural Comput. 3:155–166

    Article  Google Scholar 

  50. Kreiter AK, Singer W (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur. J. Neurosci. 4:369–375

    Article  Google Scholar 

  51. Kuffler SW, Nicholls JG, Martin AR (1984) From Neuron to Brain, 2nd Ed. (Sinauer, Sunderland, Mass.)

    Google Scholar 

  52. Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence (Springer, Berlin), pp. 68–77

    Google Scholar 

  53. Kurrer C, Nieswand B, Schulten K (1990) A model for synchronous activity in the visual cortex. In: Self-Organization, Emerging Properties, and Learning, A. Babloyantz (Ed.) (Plenum Press), pp. 81–85

    Google Scholar 

  54. Lamperti J (1966) Probability (Benjamin, New York), Chap. 7

    MATH  Google Scholar 

  55. Larson J, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988

    Article  ADS  Google Scholar 

  56. Lisman J (1989) A mechanism for Hebb and anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. U.S.A. 86:9574–9578

    Article  ADS  Google Scholar 

  57. Malinow R, Miller JP (1986) Synaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320:529–530

    Article  ADS  Google Scholar 

  58. McCormick DA (1990) Membrane properties and neurotransmitter actions. In: The Synaptic Organization of the Brain, G.M. Sheperd (Ed.) (Oxford University Press)

    Google Scholar 

  59. Miller KD (1990) Derivation of linear Hebbian equations from a nonlinear mode of synaptic plasticity. Neural Comput. 2:321–333

    Article  Google Scholar 

  60. Murthy VN, Fetz EE (1992) Coherent 25 to 35 Hz oscillations in the sen-sorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. U.S.A. 89:5670–5674

    Article  ADS  Google Scholar 

  61. Neven H, Aertsen A (1992) Rate coherence and event coherence in the visual cortex: A neural model of object recognition. Biol. Cybern. 67:309–322

    Article  Google Scholar 

  62. Pawelzik K (1994) Detecting coherence in neuronal data. This volume

    Google Scholar 

  63. Pawelzik K (1991) Nichtlineare Dynamik und Hirnaktivität (Verlag Harri Deutsch, Frankfurt)

    Google Scholar 

  64. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, R.F. Reiss (Ed.) (Stanford University Press), pp. 73–97

    Google Scholar 

  65. Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses II. Desynchronization. Neural Comput. 3:167–178

    Article  Google Scholar 

  66. Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex. 1. Mean-field theory and derivation of the phase equations. Biol. Cybern. 64:77–82

    Article  MATH  Google Scholar 

  67. Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex. 2. Phase description and feature-dependent synchronization. Biol. Cybern. 64:83–85

    Article  MATH  Google Scholar 

  68. Shiino M, Frankowicz M (1989) Synchronization of infinitely many coupled limit cycle oscillators. Phys. Lett. A 136:103–108

    Article  MathSciNet  ADS  Google Scholar 

  69. Singer W (1994) The role of synchrony in neocortical processing and synaptic plasticity. This volume

    Google Scholar 

  70. Sompolinsky H, Golomb D, Kleinfeld D (1990) Global processing of visual stimuli in a neural network of coupled oscillators. Proc. Natl. Acad. Sci. U.S.A. 87:7200–7204

    Article  ADS  Google Scholar 

  71. Sperling G (1960) The information available in brief visual presentations. Psychol. Monogr. 74 (11 Whole No. 498): 1–29

    Google Scholar 

  72. Sporns O, Tononi G, Edelman GM (1994) Reentry and dynamical interactions of cortical networks. This volume

    Google Scholar 

  73. Sporns O, Gaily JA, Reeke GN, Edelman GM (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc. Natl. Acad. Sci. U.S.A. 86:7265–7269

    Article  ADS  Google Scholar 

  74. Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrent connections. Proc. Natl. Acad. Sci. U.S.A. 88:129–133

    Article  ADS  Google Scholar 

  75. Sutherland S (1991) Only four possible solutions. Nature 353:389–390

    Article  ADS  Google Scholar 

  76. Sutton JP, Beis JS, Trainor LEH (1988) Hierarchical model of memory and memory loss. J. Phys. A 21:4443–4454

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Trefz T (1991) Oszillationen im Cortex, Diplomarbeit, Technische Universität, München

    Google Scholar 

  78. von der Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol. Cybern. 67:233–242

    Article  MATH  Google Scholar 

  79. von der Malsburg C, Schneider W (1986) A neural cocktail party processor. Biol. Cybern. 54:29–40

    Article  Google Scholar 

  80. Wang D, Buhmann J, von der Malsburg C (1990) Pattern segmentation in associative memory. Neural Comput. 2:94–106

    Article  Google Scholar 

  81. Wilson AM, Bower JM (1991) A computer simulation of oscillatory behavior in primary visual cortex. Neural Comput. 3:498–509

    Article  Google Scholar 

  82. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12:1–24

    Article  ADS  Google Scholar 

  83. Yamaguchi Y, Shimizu H (1984) Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D 11:212–226

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:310–317

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ritz, R., Gerstner, W., van Hemmen, J.L. (1994). Associative Binding and Segregation in a Network of Spiking Neurons. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds) Models of Neural Networks. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4320-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4320-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8736-0

  • Online ISBN: 978-1-4612-4320-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics