Skip to main content

How Set-Valued Maps Pop Up in Control Theory

  • Conference paper
Systems and Control in the Twenty-First Century

Part of the book series: Systems & Control: Foundations & Applications ((PSCT,volume 22))

  • 808 Accesses

Abstract

We describe four instances where set-valued maps intervene either as a tool to state the results or as a technical tool of the proof. The paper is composed of four rather independent sections:

  1. 1.

    Set-Valued Optimal Synthesis and Differential Inclusions

  2. 2.

    Viability Kernel

  3. 3.

    Nonsmooth Solutions to Hamilton-Jacobi-Bellman Equations

  4. 4.

    Interior and Boundary of Reachable Sets

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. AUBIN J.-P. (1987) Smooth and Heavy Solutions to Control Problems, in NONLINEAR AND CONVEX ANALYSIS, Eds. B.-L. Lin & Simons S., Proceedings in honor of Ky Fan, Lecture Notes in Pure and Applied Mathematics, June 24–26, 1985

    Google Scholar 

  2. AUBIN J.-P. (1991) VIABILITY THEORY, Birkhäuser, Boston, Basel, Berlin

    MATH  Google Scholar 

  3. AUBIN J.-P. & FRANKOWSKA H. (1990) SET-VALUED ANALYSIS, Birkhäuser, Boston, Basel, Berlin.

    MATH  Google Scholar 

  4. AUBIN J.-P. & FRANKOWSKA H. (to appear) Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions, NODEA

    Google Scholar 

  5. AUBIN J.-P. & FRANKOWSKA H. (to appear) The viability kernel algorithm for computing value functions of infinite horizon optimal control problems, JMAA

    Google Scholar 

  6. AUBIN J.-P. & NAJMAN L. (1994) L’algorithme des montagnes russes pour l’optimisation globale, Comptes-Rendus de l’Acadmie des Sciences, Paris, 319, 63–36

    MathSciNet  Google Scholar 

  7. BARRON E.N. & JENSEN R. (1990) Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex hamiltonians, Comm. Partial Diff. Eqs., 15, 113–174

    Article  Google Scholar 

  8. BONNEUIL N. & MULLERS K. (to appear) Viable populations in a predator-prey system, J. Mathematical Biology

    Google Scholar 

  9. BONY J.M. (1969) Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble, 19, 277–304.

    Article  MathSciNet  MATH  Google Scholar 

  10. BYRNES C.I. & ISIDORI A. (1984) A frequency domain philosophy for nonlinear systems with applications to stabilization and adaptive control, in Proc. 23rd CDC, Las Vegas, NV, 1569–1573

    Google Scholar 

  11. BYRNES Ch. & FRANKOWSKA H. (1992) Unicité des solutions optimales et absence de chocs pour les équations d’Hamilton-Jacobi-Bellman et de Riccati, Comptes-Rendus de l’Académie des Sciences, t. 315, Série 1, Paris, 427–431

    MathSciNet  MATH  Google Scholar 

  12. CANNARSA P. & FRANKOWSKA H. (1991) Some characterizations of optimal trajectories in control theory, SIAM J. on Control and Optimization, 29, 1322–1347

    Article  MathSciNet  MATH  Google Scholar 

  13. CANNARSA P., FRANKOWSKA H. & SINESTRARI C. (to appear) Properties of minimal time function for target problem, J. Math. Systems, Estimation and Control

    Google Scholar 

  14. CANNARSA P. & SONER H. (1987) On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana University Math. J., 36, 501–524

    Article  MathSciNet  Google Scholar 

  15. CARDALIAGUET P., QUINCAMPOIX M. & SAINT-PIERRE P. (1994) Some algorithms for differential games with two players and one target, MAM, 28, 441–461

    MathSciNet  MATH  Google Scholar 

  16. CARDALIAGUET P., QUINCAMPOIX M. & SAINT-PIERRE P. (1995) Contribution l’tude des jeux diffrentiels quantitatifs et qualitatifs avec contrainte sur l’tat, Comptes-Rendus de l’Acadmie des Sciences, 321, 1543–1548

    MathSciNet  MATH  Google Scholar 

  17. CARDALIAGUET P., QUINCAMPOIX M. & SAINT-PIERRE P. (to appear) Numerical methods for optimal control and differential games, AMO

    Google Scholar 

  18. CAROFF N. & FRANKOWSKA H. (to appear)Conjugate points and shocks in nonlinear optimal control, Trans. Amer. Math. Soc.

    Google Scholar 

  19. CARTELIER J. & MULLERS K. (1994) An elementary Keynesian model: A preliminary approach, IIASA WP 94–095

    Google Scholar 

  20. CLARKE F.H. (1983) OPTIMIZATION AND NONSMOOTH ANALYSIS, Wiley-Interscience

    MATH  Google Scholar 

  21. CRANDALL M.G., EVANS L.C. & LIONS PL. (1984) Some properties of viscosity solutions of Hamilton-Jacobi equation, Trans. Amer. Math. Soc., 282(2), 487–502

    Article  MathSciNet  MATH  Google Scholar 

  22. DOYEN L. & GABAY D. (1996) Risque climatique, technologie et viabilit, Actes des Journes Vie, Environnement et Socits

    Google Scholar 

  23. DOYEN L., GABAY D. & HOURCADE J.-C. (1996) Economie des ressources renouvelables et viabilit, Actes des Journes Vie, Environnement et Socits

    Google Scholar 

  24. FILIPPOV A.F. (1967) Classical solutions of differential equations with multivalued right hand side, SIAM J. on Control, 5, 609–621

    Article  MATH  Google Scholar 

  25. FLEMING W.H. & RISHEL R.W. (1975) DETERMINISTIC AND STOCHASTIC OPTIMAL CONTROL, Springer-Verlag, New York

    Book  MATH  Google Scholar 

  26. FRANKOWSKA H. (1984) The first order necessary conditions for nonsmooth variational and control problems, SIAM J. on Control and Optimization, 22, 1–12

    Article  MathSciNet  MATH  Google Scholar 

  27. FRANKOWSKA H. (1986) Théorème d’application ouverte pour des correspondances, Comptes-Rendus de l’Académie des Sciences, PARIS, Série 1, 302, 559–562

    MathSciNet  MATH  Google Scholar 

  28. FRANKOWSKA H. (1987) Théorèmes d’application ouverte et de fonction inverse, Comptes Rendus de l’Académie des Sciences, PARIS, Série 1, 305, 773–776

    MathSciNet  MATH  Google Scholar 

  29. FRANKOWSKA H. (1987) L’équation d’Hamilton-Jacobi contingente, Comptes-Rendus de l’Académie des Sciences, PARIS, Série 1, 304, 295–298

    MathSciNet  MATH  Google Scholar 

  30. FRANKOWSKA H. (1989) Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations, AMO, 19, 291–311

    MathSciNet  MATH  Google Scholar 

  31. FRANKOWSKA H. (1990) Some inverse mapping theorems, Ann. Inst. Henri Poincax, Analyse Non Linaire, 7, 183–234

    MathSciNet  MATH  Google Scholar 

  32. FRANKOWSKA H. (1991) Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations, Proceedings of 30th CDC, Brighton, December 11–13

    Google Scholar 

  33. FRANKOWSKA H. (1993) Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, SIAM J. on Control and Optimization, 31, 257–272

    Article  MathSciNet  MATH  Google Scholar 

  34. FRANKOWSKA H., PLASKACZ S. & RZEZUCHOWSKI T. (1995) Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Diff. Eqs., 116, 265–305

    Article  MathSciNet  MATH  Google Scholar 

  35. FRANKOWSKA H. & PLASKACZ S. (1996) A measurable upper semicontinuous viability theorem for tubes, J. of Nonlinear Analysis, TMA, 26, 565–582

    Article  MathSciNet  MATH  Google Scholar 

  36. FRANKOWSKA H. & QUINCAMPOIX M. (1991) Viability kernels of differential inclusions with constraints: algorithm and applications, J. Math. Systems, Estimation and Control, 1, 371–388

    MathSciNet  Google Scholar 

  37. MARCHAUD H. (1934) Sur les champs de demi-cônes et les équations différentielles du premier ordre, Bull. Sc. Math., 62, 1–38

    MathSciNet  Google Scholar 

  38. SAINT-PIERRE P. (to appear) Newton’s method for set-valued maps, Set-Valued Analysis

    Google Scholar 

  39. WARGA J. (1976) Derivate containers, inverse functions and controllability, Calculus of Variations and Control Theory, Academic Press, 13–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Frankowska, H. (1997). How Set-Valued Maps Pop Up in Control Theory. In: Byrnes, C.I., Datta, B.N., Martin, C.F., Gilliam, D.S. (eds) Systems and Control in the Twenty-First Century. Systems & Control: Foundations & Applications, vol 22. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-4120-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4120-1_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-8662-2

  • Online ISBN: 978-1-4612-4120-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics