Skip to main content

Immunotherapy of insulin-dependent diabetes mellitus: Tolerance after short-term anti—;IL-2 receptor/cyclosporine therapy in BB/OK rats

  • Chapter
Lessons from Animal Diabetes VI

Abstract

There is convincing evidence that the destruction of pancreatic B-cells leading to insulin-dependent diabetes mellitus (IDDM) is immunologically mediated1–3 and occurs in all mammals.4 Investigations of animal strains predominantly used in diabetes research, the NOD mouse and the BB rat, demonstrated that the acute onset of hyperglycemia is the final result of a chronic preclinical phase (prediabetes). Already during prediabetes and definitely at the onset of the disease, the number of pancreatic B-cells is reduced.5–11 In addition to the diminished number of B-cells, the pancreatic islets of prediabetic or newly diagnosed diabetic animals or patients are characterized by an invasion of immunocytes, so-called insulitis.5,6,9–14 The immunocytochemistry of invading mononuclear cells (MNC) reveals the presence of all major subsets, such as T-lymphocytes (CD4 and CD8 T-cells), B-lymphocytes, macrophages, and NK-cells.8,10–15 Electron microscopic investigations of inflafhed pancreatic islets demonstrated a close contact between immune cells and pancreatic B-cells. As a result of B-cell destruction, B-cell granules have been observed in the extracellular space.15–17 Although the molecular mechanism of B-cell killing is still not established, cytotoxic reactivities of CD4 T-cells,18 CD8 T-cells,19 NK cells,20 and macrophages21 against pancreatic B-cells have been demonstrated. In addition, it has been shown that the secretory products of immunocytes, the cytokines, may directly disrupt B-cells,22 or may induce surface proteins as MHC-antigens or adhesion molecules, which allow or facilitate cell-mediated killing of B-cells.23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hahn HJ. Tierexperimenteller Diabetes. In: Diabetes mellitus. Bibergeil H, ed. Fischer Verlag, Jena, pp 108–17, 1989.

    Google Scholar 

  2. Leiter EH, Prochazka M, Coleman DL. Animal model of human disease. The non-obese diabetes (NOD) mouse. Am J Pathol 128:380–3, 1987.

    PubMed  CAS  Google Scholar 

  3. Like AA, Rossini AA. Spontaneous autoimmune diabetes mellitus in the Bio-Breeding/Worcester rat. Surv Synth Pathol 3:131–8, 1984.

    CAS  Google Scholar 

  4. Buschard K. The thymus-dependent immune system in the pathogenesis of type 1 (insulin-dependent) diabetes mellitus. Animal model and human studies. Dan Med Bull 32:139–51, 1985.

    PubMed  CAS  Google Scholar 

  5. Foulis AK, Farquharson MA. Aberrant expression of HLA-DR antigens by insulin-containing beta-cells in recent onset type I diabetes mellitus. Diabetes 35:1215–24, 1986.

    PubMed  CAS  Google Scholar 

  6. Gepts W, De Mey J. Islet cell survival determined by morphology: An immuno-cytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–61, 1978.

    PubMed  Google Scholar 

  7. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–33, 1965.

    PubMed  CAS  Google Scholar 

  8. Bottazzo GF, Path MRC, Dean BM, et al. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313:353–60, 1985.

    PubMed  CAS  Google Scholar 

  9. Hanafusa T, Miyazaki A, Miyagawa J, et al. Examination of islets in the pancreas biopsy specimens from newly diagnosed type I (insulin-dependent) diabetic patients. Diabetologia 33:105–11, 1990.

    PubMed  CAS  Google Scholar 

  10. Lucke S, Besch W, Kauert C, Hahn HJ. The endocrine pancreas of BB/OK-rats before and at diagnosis of hyperglycemia. Exp Clin Endocrinol 91:161–70, 1988.

    PubMed  CAS  Google Scholar 

  11. Hanenberg H, Kolb-Bachofen V, Kantwerk-Funke G, Kolb H. Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreas of pre-diabetic BB rats. Diabetologia 32:126–34, 1989.

    PubMed  CAS  Google Scholar 

  12. Dean BM, Walker R, Bone AJ, et al. Pre-diabetes in the spontaneously diabetic BB/E rat: Lymphocyte subpopulations in the pancreatic infiltrate and expression of rat MHC class II molecules in endocrine cells. Diabetologia 28:464–6, 1985.

    PubMed  CAS  Google Scholar 

  13. Hahn HJ, Gerdes J, Lücke S, et al. Phenotypical characterization of the cells invading pancreatic islets of diabetic BB/OK rats: Effect of interleukin 2 receptor-targeted immunotherapy. Eur J Immunol 18:2037–42, 1988.

    PubMed  CAS  Google Scholar 

  14. Lucke S, Diamantstein T, Hahn HJ. Different lymphocyte subset distribution within “insulitis” islets of normoglycaemic and prediabetic BB/OK rats of similar age. Exp Clin Endocrinol 95:57–63, 1990.

    PubMed  CAS  Google Scholar 

  15. Diamantstein T, Hahn HJ. Interleukin-2 receptor-targeted immune therapy. In: Monoclonal antibodies and peptide therapy in autoimmune diseases. Bach JF, ed. Marcel Dekker, New York, pp 295–318, 1993.

    Google Scholar 

  16. Maruyama T, Ogawa M, Kobayashi F, et al. Electron microscopic studies on the interaction of pancreatic islet cells and splenic lymphocytes in non-obese diabetic (NOD) mice. Biomed Res 9:67–73, 1988.

    Google Scholar 

  17. Miyagawa J, Hanafusa T, Itoh N, et al. Ultrastructural pathology of insulitis in the pancreas biopsy specimens from newly diagnosed type I diabetic patients. Abstract 15th IDF Congress, 1994, Kobe, Japan, p 434.

    Google Scholar 

  18. Haskins K, McDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T-cell clone. Science 249:1433–36, 1990.

    PubMed  CAS  Google Scholar 

  19. Nagata M, Yoon JW. Studies on autoimmunity for T-cell mediated β-cell destruction. Distinct differences in β-cell destruction between CD4+ and CD8 + T-cell clones erived from lymphocytes infiltrating the islets of NOD mice. Diabetes 41:998–1008, 1992.

    PubMed  CAS  Google Scholar 

  20. Hosszufalus N, Chan E, Teruya M, et al. Quantitative pheotypic and functional analysis of islet immune cells before and after diabetes onset in the BB rat. Diabetologia 36:1146–54, 1993.

    Google Scholar 

  21. Appels B, Burkhart V, Kantwerk-Funke G, et al. Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol 142:3803–8, 1989.

    PubMed  CAS  Google Scholar 

  22. Nerup J, Mandrup-Poulsen T, Molvig J. The HLA-IDDM association for etiology and pathogenesis of IDDM. Diabetes Metab Rev 3:779–802, 1987.

    PubMed  CAS  Google Scholar 

  23. Kuttler B, Wanka H, Dunger A, Hahn HJ. Expression of MHC antigens on pancreatic islet cells. In: Frontiers of insulin secretion and pancreatic B-cell research. Flatt PR, Lenzen S, eds. Smith-Gordon, London, pp 509–15, 1994.

    Google Scholar 

  24. Skyler JS. Immune intervention studies in insulin-dependent diabetes mellitus. Diabetes Metab Rev 3:1017–35, 1987.

    PubMed  CAS  Google Scholar 

  25. Vialettes B, Atlan-Gepner C, Hermitte L. Specific immuno-therapy for the prevention of diabetes: Theoretical and practical aspects. Diabetes Metab Rev 9:251–5, 1993.

    PubMed  CAS  Google Scholar 

  26. Muir A, Schatz DA, Pozzilli P, MacLaren NK. Intervention therapies for insulin-dependent diabetes. Autoimmunity 16:301–10, 1993.

    PubMed  CAS  Google Scholar 

  27. Smith KA. Interleukin-2: Inception, impact and implications. Science 240:1169–76, 1988.

    PubMed  CAS  Google Scholar 

  28. Waldmann TA. Multichain interleukin-2 receptor: A target for immunotherapy in lymphoma. Immunol Rev 81:914–23, 1989.

    CAS  Google Scholar 

  29. Diamantstein T, Osawa H. The interleukin-2 receptor, its physiology and a new approach to a selective immuosuppressive therapy by anti-interleukin-2 receptor monoclonal antibodies. Immuol Rev 92:5–27, 1986.

    CAS  Google Scholar 

  30. Diamantstein T, Tilney NL, Strom TB, et al. Interleukin-2 receptor targeted immunosuppressive therapy with anti-interleukin-2 receptor monoclonal antibodies directed against the L-chain of the interleukin 2 receptor: Studies on selectivity and mode of action. In: Advances in immuopharmacology 4. Hadden JW, Spreafico F, Yamamura Y, et al., eds. Pergamon Press, UK, pp 95–104, 1988.

    Google Scholar 

  31. Hahn HJ, Kuttler B, Dunger A, et al. Prolongation of rat pancreatic islet allograft survival by teatment of recipient rats with monoclonal anti-interleukin-2 receptor antibody and cyclosporine. Diabetologia 30:44–6, 1987.

    PubMed  CAS  Google Scholar 

  32. Kupiec-Weglinski JW, Hahn HJ, et al. Cyclosporin potentiates the immunosuppressive effects of anti-interleukin 2 receptor monoclonal antibody therapy. Transplant Proc 2:207–16, 1988.

    Google Scholar 

  33. Kupiec-Weglinski JW, Diamantstein T, Tilney NL. Interleukin 2 receptor-targeted therapy—rationale and applications in organ transplantations. Transplantation 46:785–92, 1988.

    PubMed  CAS  Google Scholar 

  34. Kuttler B, Heym S, Volk HD, et al. No correlation between changes in lymphocyte subsets and pancreatic B-cell destruction. Horm Metab Res 22(Suppl 25): 182–7, 1990.

    Google Scholar 

  35. Wanka H, Kuttler B, Hahn HJ. Detection of β-cell autoreactive cells from BB rats after sensibilization of lymphocytes by syngeneic pancreatic islets. Diabetologia 35(Suppl 1):A213, 1992.

    Google Scholar 

  36. Wanka H, Kuttler B, Hahn HJ: Is the in vitro destruction of pancreatic islet cells MHC-dependent? Diabetologia 36(Suppl 1):A9, 1993.

    Google Scholar 

  37. Hahn HJ, Kuttler B, Volk HD, et al. Interleukin 2 receptor-targeted therapy in islet transplantation research. Horm Metab Res 25(Suppl 1): 177–80, 1989.

    Google Scholar 

  38. Tellides G, Dallman MJ, Morris PJ: Synergistic interaction of cyclosporine A with interleukin 2 receptor monoclonal antibody therapy. Transplant Proc 20(Suppl 2):202, 1988.

    PubMed  CAS  Google Scholar 

  39. Granelli-Piperno A, Keane M, Steinman RM: Evidence that cyclosporine inhibits cell-mediated immunity primarily at the level of the T lymphocytes rather than the accessory cell. Transplantation 46:53S-60S, 1988.

    PubMed  CAS  Google Scholar 

  40. Hahn HJ, Lucke S, Klöting I, et al. Curing BB rats of freshly manifested diabetes by short-term treatment with a combination of a monoclonal anti-interleukin 2 receptor antibody and a subtherapeutic dose of cyclosporin A. Eur J Immunol 17:1075–78, 1987.

    PubMed  CAS  Google Scholar 

  41. Kelley VE, Gailton GN, Hattori M, et al. Anti-interleukin 2 receptor antibody suppresses murine diabetic insulitis and lupus nephritis. J Immunol 140:59–61, 1988.

    PubMed  CAS  Google Scholar 

  42. Stark O, Klöting I, Reiher K, Kohnert KD: The major histocompatibility complex and insulin-dependent diabetes in BB rats. Acta Biol Med Germ 41:1129–33, 1982.

    PubMed  CAS  Google Scholar 

  43. Klöting I, Stark O, Hahn HJ. Animal model of the insulin-dependent diabetes mellitus in BB rats: Their RT1U homogeneity and prolonged survival of allogeneic skin grafts. Folia Biol 30:24–32, 1984.

    Google Scholar 

  44. Klöting I, Stark O, Brdicka R. Incidence of insulin-dependent mellitus in BB rats: Their genetic heterogeneity and susceptibility to infection. Folia Biol 30:33–42, 1984.

    Google Scholar 

  45. Klöting I, Stark O. Occurrence of antibodies against gene products of the major histocompatibility complex in normal sera of diabetes-prone BB rats. Folia Biol 31:34–7, 1985.

    Google Scholar 

  46. Knospe S, Köhler E, Klöting I. Cell-mediated immune reactions against islets of Langerhans in diabetes-prone BB rats. Exp Clin Endocrinol 89:290–6, 1987.

    PubMed  CAS  Google Scholar 

  47. Ziegler B, Klöting I, Besch W, Ziegler M, Hahn HJ. Cytotoxic activity of sera from diabetic BB rats against BB rat islet—a functional study. Diabetes Res 4:67–72, 1987.

    PubMed  CAS  Google Scholar 

  48. Schröder D, Hehmke B, Klöting I, Besch W. Effect of sera from diabetes-prone BB/OK rats on neonatal rat pancreatic islets and islet cell suspensions. Exp Clin Endocrinol 93:187–92, 1989.

    PubMed  Google Scholar 

  49. Hehmke B, Lücke S, Schröder D, Klöting I, Kohnert KD. Complement-dependent antibody-mediated cytotoxicity in the spontaneously diabetic BB/OK rat: Association with beta-cell volume density. Eur J Immunol 20:1091–96, 1990.

    PubMed  CAS  Google Scholar 

  50. Klöting I, Reiher K. Einige Aspekte zur Haltung, Zucht und Reproduktion spontandiabetischer BB-Ratten. Z Versuchstierkd 27:5–12, 1985.

    PubMed  Google Scholar 

  51. Klöting I, Vogt L. Breeding problems in diabetes-prone BB rats after “wet hysterectomy.” Z Versuchstierkd 31:19–22, 1988.

    PubMed  Google Scholar 

  52. Klöting I, Vogt L, Stark O, Fischer U. Genetic heterogeneity in different BB rat subpopulations. Diabetes Res 6:145–9, 1987.

    PubMed  Google Scholar 

  53. Klöting I, Vogt L. BB/O(ttawa)K(arlsburg) rats: Features of a subline of diabetes-prone BB rats. Diabetes Res Clin Exp 18:79–87, 1991.

    Google Scholar 

  54. Klöting I, Vogt L. On the influence of metabolic state of parents at conception and pregnancy on incidence and age at onset of diabetes in the progeny of BB/OK rats. Diabetes Res 19:37–40, 1992.

    PubMed  Google Scholar 

  55. Vogt L, Klöting I. Model-based prediction of diabetes incidence in BB/OK rats. Diabetes Metab 19:183–7, 1993.

    CAS  Google Scholar 

  56. Vogt L, Klöting I. BB-RADABA: A computer program as a tool for breeding and management of laboratory animals. Comp Method Progr Biomed 38:73–4, 1992.

    CAS  Google Scholar 

  57. Sibley RK, Sutherland DER, Goetz F, Michael AF. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest 53:132–44, 1985.

    PubMed  CAS  Google Scholar 

  58. Hahn HJ, Kauert C, Dunger A, et al. Interleukin 2 receptor targeted immunotherapy in the prevention of autoimmune beta cell destruction as observed in diabetic BB/OK rats grafted with BB/OK rat islets. Autoimmunity 5:139–42, 1989.

    PubMed  CAS  Google Scholar 

  59. Gottlieb PA, Berrios JP, Mariani G, et al. Autoimmune destruction of islets transplanted into RT6-depleted resistant BB/Wor rats. Diabetes 39:643–5, 1990.

    PubMed  CAS  Google Scholar 

  60. Mathieu C. Immune intervention in animal models of type I diabetes: Pathogenetical and therapeutical aspects. Thesis, Katholieke Universiteit Leuven, Faculteit Geneeskunde, Leuven, 1994.

    Google Scholar 

  61. Wang Y, Pontesilli O, Gill RG, et al. The role of CD4+ and CD8+ T cells in the destruction of islet grafts by spontaneously diabetic mice. Proc Natl Acad Sci USA 88:527–31, 1991.

    PubMed  CAS  Google Scholar 

  62. Hahn HJ. Die isolierte Langerhanssche Insel, ein Modell zur Untersuchung der Insulinsekretion in vitro. Endokrinologie 71:308–24, 1978.

    PubMed  CAS  Google Scholar 

  63. Kuttler B, Mathieu C, Waer M, et al. Lack of disease recurrence in diabetic BB/Pfd rats after syngeneic islet transplantation. Autoimmunity 15:107–12, 1993.

    PubMed  CAS  Google Scholar 

  64. Mathieu C, Kuttler B, Waer M, et al. Spontaneous reestablishment of self-tolerance in BB/Pfd rats. Transplantation 58:349–54, 1994.

    PubMed  CAS  Google Scholar 

  65. Woehrle M, Pullmann J, Stuenkel KG, et al. Effect of anti-interleukin-2 receptor antibody treatment on recurrence autoimmune insulitis in the BB rat. Transplant Proc 26:734–5, 1994.

    PubMed  CAS  Google Scholar 

  66. Holowachuk EW, Greer MK, Martin DR. The complete sequence of the MHC class II chain RT.1D alpha u of the diabetic BB rat: mRNA levels of RT1.D alpha in lymphocytes. Nucleic Acids Res 15:10551–567, 1987.

    PubMed  CAS  Google Scholar 

  67. Hahn HJ, Ziegler B, Lücke S. Streptozocin diabetic BB/OK rats accept permanently BB/OK-islet grafts without immunosuppression. Z Versuchstierkd 32:135–40, 1989.

    PubMed  CAS  Google Scholar 

  68. Woehrle M, Pullmann J, Bretzel RG, Federlin K. Prevention of recurrent autoimmune diabetes in the BB rat by islet transplantation under the renal capsule. Transplantation 53:1099–102, 1992.

    PubMed  CAS  Google Scholar 

  69. Kuttler B, Dunger A, Volk, et al. Prevention and suppression of autoimmune pancreatic beta-cell destruction in BB rats by syngeneic lymphocytes obtained from long-term normoglycaemic donors. Diabetologia 34:74–7, 1991.

    PubMed  CAS  Google Scholar 

  70. Mac Kay P. Adoptive transfer of diabetes to and from old normoglycaemic BB rats. Diabetologia 38:145–52, 1995.

    Google Scholar 

  71. Hahn HJ, Kuttler B. Influence on the pancreatic β-cell of manipulations with therapeutic potential for prevention of insulin-dependent diabetes. In: Frontiers of insulin secretion and pancreatic B-cell research. Flatt PR, Lenzen S, eds. Smith-Gordon, London, pp 597–604, 1994.

    Google Scholar 

  72. Hutchings P, O’Reilly L, Parish NM, et al. The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to ß-cells in NOD mice. Eur J Immunol 22:1913–18, 1992.

    PubMed  CAS  Google Scholar 

  73. Charlton B, Mandel TE. Recurrence of insulitis in the NOD mouse after early prolonged anti-CD4 monoclonal antibody treatment. Autoimmunity 4:1–7, 1989.

    PubMed  CAS  Google Scholar 

  74. Steinbriichel DA, Larsen S, Kristensen T, et al. Survival, function, morphology and serological aspects of rat renal allografts. Effect of short-term treatment with cyclosporin A, anti-CD4 and anti-interleukin-2 receptor monoclonal antibodies. AP-MIS 100:682–94, 1992.

    Google Scholar 

  75. Kuttler B, Kauert C, Diamantstein T, Hahn HJ. Long-term immunosuppression inhibits the development of tolerance in BB rats. Symposium Intern Diabetes Immunother Group (IDIG) Istanbul, 1993.

    Google Scholar 

  76. Vialettes B, Bardet S, Hirn D, et al. Pilot study of combination anti IL2R mc antibody-low dose of Cyclosporin A in recently diagnosed type 1 diabetes. Diabetologia 34(Suppl 2):A180, 1991.

    Google Scholar 

  77. Ueda H, Hancock WW, Cheung YC, et al. The mechanism of synergistic interaction between anti-interleukin 2 receptor monoclonal antibody and cyclosporine therapy in rat recipients of organ allografts. Transplantation 50:545–50, 1990.

    PubMed  CAS  Google Scholar 

  78. Sido B, Morris PJ, Dallman M. Phenotypic and functional analysis of graft-infiltrating cells following therapy with anti-interleukin-2 receptor monoclonal antibody and cyclosporine A in the rat. Transplant Proc 24:2549–50, 1992.

    PubMed  CAS  Google Scholar 

  79. Soulillou JP, Cantarovich D, Dantal J, et al. Anti-IL-2 receptor and anti-LFA-1 monoclonal antibodies in transplantation: Rationale and Nantes clinical experience. In: A critical analysis of monoclonal antibody therapy in transplantation. Burlingham WJ, ed. CRC Press, Boca Raton, FL, pp 47–66, 1992.

    Google Scholar 

  80. Wood MJA, Sloan DJ, Dallman MJ, Charlton HM. Specific tolerance to neural allografts induced with an antibody to the interleukin 2 receptor. J Exp Med 177:597–603, 1993.

    PubMed  CAS  Google Scholar 

  81. Waldmann H, Cobbold S. Monoclonal antibodies for the induction of transplantation tolerance. Curr Opin Immunol 5:753–8, 1993.

    PubMed  CAS  Google Scholar 

  82. Leong LYW, Qin S, Cobbold SP, Waldmann H. Classical transplantation tolerance in the adult: The interaction between myeloablation and immunosuppression. Eur J Immunol 22:2825–30, 1992.

    PubMed  CAS  Google Scholar 

  83. Qin S, Cobbold SP, Pope H, et al. Infectious transplantation tolerance. Science 259:974–77, 1993.

    PubMed  CAS  Google Scholar 

  84. Tomonari K. Tolerance in vivo and in vitro. Immunol Rev 116:139–57, 1990.

    PubMed  CAS  Google Scholar 

  85. Alters SE, Grossman D, Fathmann CG. Anti-CD4-mediated transplantation tolerance: Mechanisms and memory. In: A critical analysis of monoclonal antibody therapy in transplantation. Burlingham WJ, ed. CRC Press, Boca Raton, FL, pp 79–99, 1992.

    Google Scholar 

  86. Hahn HJ, Lucke S, Kuttler B, et al. Investigation of diabetes-prone normoglycaemic BB rats. In: Lessons from animal diabetes. Shafrir E, ed. Smith-Gordon, London, 3:30–3, 1990.

    Google Scholar 

  87. Hahn HJ, Lücke S, Klöting I, Besch W. Prospective investigations of long-term normoglycaemic BB/OK rats: Serial determination of glucose tolerance, insulitis, B-cell volume density and pancreatic insulin content. Exp Clin Endocrinol 98:54–61, 1991.

    Google Scholar 

  88. Hahn HJ, Diamantstein T. Monoclonals and/or immunotoxims as new therapeutic agents in the treatment of autoimmune diseases. In: Diabetes mellitus. Wojcikowski C, ed. Verlag Normex, Gdansk, pp 1–10, 1992.

    Google Scholar 

  89. Hahn HJ, Kauert C, Kuttler B. Efficacy of FK506 in the prevention of autoaggression in syngeneicly grafted diabetic BB rats. Horm Metab Res 25:56(A24), 1993.

    Google Scholar 

  90. Chen Z, Cobbold S, Waldmann H, Metealf S. Stability of tolerance in mice generated by CD4 and CD8 monoclonal antibody treatment: Cell transfer experiments. Transplant Proc 25:790–1, 1993.

    PubMed  CAS  Google Scholar 

  91. Kupiec-Weglinski JW, Diamanstein T, Tilney NL, Strom TB. Therapy with monoclonal antibody to interleukin 2 receptor spares suppressor T cells and prevents or reverses acute allograft rejection in rats. Proc Natl Acad Sci USA 83:2624–27, 1986.

    PubMed  CAS  Google Scholar 

  92. Rashba Ej, Reich EP, Janeway CA, Sherwin RS. Type 1 diabetes mellitus: An imbalance between effector and regulatory T cells? Acta Diabetol 30:61–9, 1993.

    PubMed  CAS  Google Scholar 

  93. Kuttler B, Kauert C, Wanka H, et al. Tolerance to MHC-identical allogeneic rat islets is mediated by CD4+ helper T-lymphocytes. Diabetologia 38(Suppl 1):A84, 1995.

    Google Scholar 

  94. Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cure diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimune potential. J Exp Med 177:627–36, 1993.

    PubMed  CAS  Google Scholar 

  95. Hahn HJ, Hellman B, Lernmark A, et al. The pancreatic B-cell recognition of insulin secretagogues. X. Influence of neuraminidase treatment on the release of insulin, and the islet content of insulin, sialic acid, and adenosine 3’5’-cyclic monophosphate. J Biol Chem 249:5275–84, 1974.

    PubMed  CAS  Google Scholar 

  96. Ziegler B, Hahn HJ, Ziegler M. Insulin recovery in pancrease and host organs of islet grafts. Exp Clin Endocrinol 85:53–60, 1985.

    PubMed  CAS  Google Scholar 

  97. Lucke S, Ziegler B, Diaz-Alonso JM, Hahn HJ. Eignung spezifischer Färbemethoden für die Bestimmung des ß-Zellvolumens im Rattenpankreas mit normalem und reduziertem Insulingehalt. Acta Histochem 45:107–16, 1985.

    Google Scholar 

  98. Cordeil UL, Falini B, Erber WN, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase anti-alkaline phosphatase (APAAP complexes). J Histochem 32:219–29, 1984.

    Google Scholar 

  99. Kuttler B, Lehmann M, Lacha J, et al. Anti-CD4 therapy induces a donor-specific, organ-unspecific tolerance in allogeneic kidney graft recipients. Transplant Proc 26:728–9, 1994.

    PubMed  CAS  Google Scholar 

  100. Logothetopoulus J, Valiquette N, Madura E, Cvet D. Onset and progression of pancreatic insulitis in the overt, spontaneously diabetic, young adult BB rat studied by pancreatic biopsy. Diabetes 33:33–6, 1984.

    Google Scholar 

  101. Vogt L, Klöting I. Genetic analysis of frequencies of phenotypes in the spontaneously diabetic BB rat—a main animal model of autoimmune type-I-diabetes. Diabetes Res 22:105–13, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Kuttler, B., Lucke, S., Vogt, L., Klöting, I., Diamanstein, T., Hahn, HJ. (1996). Immunotherapy of insulin-dependent diabetes mellitus: Tolerance after short-term anti—;IL-2 receptor/cyclosporine therapy in BB/OK rats. In: Shafrir, E. (eds) Lessons from Animal Diabetes VI. Rev.Ser.Advs.Research Diab.Animals (Birkhäuser), vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4112-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4112-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8658-5

  • Online ISBN: 978-1-4612-4112-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics