Skip to main content

Martingale Problems Associated with the Boltzmann Equation

  • Chapter
Seminar on Stochastic Processes, 1989

Part of the book series: Progress in Probability ((PRPR,volume 18))

Abstract

The Boltzmann equation is a nonlinear integro-partial differential equation that is supposed to describe the distribution of positions and velocities of the molecules in a dilute gas as a function of time. It is assumed that only two molecules at a time can collide.

Research partially supported by NSF Grant DMS-8602651 and an Indo-American Fellowship under the Indo-U.S. Subcommission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. BASS, Uniqueness in law for pure jump Markov processes, to appear in PTRF.

    Google Scholar 

  2. C. CERCIGNANI, The Boltzmann Equation and its Applications. Springer 1988.

    Google Scholar 

  3. P. ECHEVERRIA, A criterion for invariant measures of Markov processes, ZW 61, 1982, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. ETHIER and T. KURTZ, Markov Processes: Characterization and Convergence. Wiley 1986.

    Google Scholar 

  5. T. FUNAKI, The diffusion approximation of the Boltzmann equation of Maxwellian molecules. Publ. RIMS, Kyoto Univ. 19, 1983, 841–886.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. FUNAKI, A certain class of diffusion processes associated with nonlinear parabolic equations. ZW 67, 1984, 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. FUNAKI, The diffusion approximation of the spatially homogeneous Boltzmann equation. Duke Math. J. 52, 1985, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. GÉRARD, Solutions globale du problème de Cauchy pour l’équation de Boltzmann. Sem. Bourbaki 40, 1987–1988, no. 699.

    Google Scholar 

  9. F. A. GRÜNBAUM, Propagation of chaos for the Boltzmann equation. Arch. Ratl. Mech. Anal. 42, 1971, 323–345.

    Article  MATH  Google Scholar 

  10. J. JACOD, Calcul Stochastiques et Problèmes de Martingales. Springer Lect. Notes Math. no. 714, 1979.

    Google Scholar 

  11. M. KAC, Foundations of kinetic theory. Proc. Third Berk. Symp. on Math. Stat. Prob. 3, 1956, 171–197.

    Google Scholar 

  12. T. KOMATSU, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proa. Japan. Acad. Sci. ser. A, 58, 1982, 353–356.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-P. LEPELTIER et B. MARCHAL, Problèmes de martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré, Nouv. Ser. B, 12, 1976, 43–103.

    Google Scholar 

  14. R. LIPTSER and A. SHIRYAEV, Statistics of Stochastic Processes, Springer 1977.

    Google Scholar 

  15. H. P. McKEAN, Jr., A Class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. 56, 1966, 1907–1911.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. OELSCHLÄGER, A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Prob. 12, 1984, 458–479.

    Article  MATH  Google Scholar 

  17. D. STR00CK, Diffusion processes associated with Lévy generators. ZW 32, 1975, 109–244.

    MathSciNet  Google Scholar 

  18. D. STR00CK and S.R.S. VARADHAN, Multidimensional Diffusion Processes. Springer 1979.

    Google Scholar 

  19. A.-S. SZNITMAN, Équations de type Boltzmann, spatiàlement homogènes. ZW 66, 1984, 559–592.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. TANAKA, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. ZW 46, 1978, 67–105.

    Article  MATH  Google Scholar 

  21. H. TANAKA, Some probabilistic problems in the spatially homogeneous Boltzmann equation, in Theory and Application of Random Fields, G. Kallianpur (ed.), Springer Lect. Notes Control Info. Sci. no. 49, 1983.

    Google Scholar 

  22. H. TANAKA, Stochastic differential equations corresponding to the spatially homogeneous Boltzmann equation of Maxwellian and non-cutoff type. J. Fac. Sci. Univ. Tokyo Sec. IA, 34, 1987, 351–369.

    MATH  Google Scholar 

  23. C. THOMPSON, Mathematical Statistical Mechanics. Princeton Univ. Press 1972.

    Google Scholar 

  24. C. TRUESDELL and R. MUNCASTER, Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press 1980.

    Google Scholar 

  25. K. UCHIYAMA, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J. 18, 1988, 245–297.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Horowitz, J., Karandikar, R.L. (1990). Martingale Problems Associated with the Boltzmann Equation. In: Çinlar, E., Chung, K.L., Getoor, R.K., Fitzsimmons, P.J., Williams, R.J. (eds) Seminar on Stochastic Processes, 1989. Progress in Probability, vol 18. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3458-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3458-6_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3457-5

  • Online ISBN: 978-1-4612-3458-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics