Skip to main content

Determinants of Epiphytic Fitness in Bacteria

  • Conference paper
Microbial Ecology of Leaves

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The bacteria that inhabit the phylloplane are generally distinctive from those that colonize other habitats and therefore probably have special adaptations which allow them to exploit leaf surfaces. Several studies have noted that a majority of the bacteria isolated from leaf surfaces are pigmented, unlike those recovered from other habitats such as nearby soil (Stout, 1960a, 1960b; Goodfellow and Austin, 1976). It has been speculated (Gibbins and Peterson, 1978) that pigmentation in epiphytic bacteria is an adaptation which allows these microorganisms to tolerate incident ultraviolet (UV) light impinging on the leaf surface (Dickinson, 1986). Presumably, such adaptations would be unnecessary in bacteria inhabiting other habitats in which incident UV radiation was lower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anwar, H., Dasgupta, M., and Costerton, J.W. 1989. Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. Journal of Antimicrobial Chemotherapy 24:647–656.

    Article  PubMed  CAS  Google Scholar 

  • Bayot, R.G. and Ries, S.M. 1986. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology 76:441–445.

    Article  CAS  Google Scholar 

  • Berg, D.E. and Berg, C.M. 1983. The prokaryotic transposable element Tn5. Biotechnology 1:417–435.

    Article  Google Scholar 

  • Blakeman, J.P. 1985. Ecological succession of leaf surface microorganisms in relation to biological control, pp. 6–30 in Windels, C.E. and Lindow, S.E. (editors), Biological Control on the Phylloplane. American Phytopathological Society Press, St. Paul, Minnesota.

    Google Scholar 

  • Bridges, B.A. 1976. Survival of bacteria following exposure to ultraviolet and ionizing radiations, pp. 183–208 in Gray, T.R.G. and Postgate, J.R. (editors), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bunster, L.L., Fokkema, N.J., and Schippers, B. 1989. Effect of surface-active Pseudomonas spp. on leaf wettability. Applied and Environmental Microbiology. 55:1340–1345.

    PubMed  CAS  Google Scholar 

  • Burrage, S.W. 1971. The micro-climate at the leaf surface, pp. 89–101 in Preece, T.F. and Dickinson, C.H. (editors), Ecology of Leaf Surface Micro-organisms. Academic Press, London.

    Google Scholar 

  • Burrage, S.W. 1976. Aerial microclimate around plant surfaces, pp. 173–184 in Dickinson C.H. and Preece, T.F. (editors), Microbiology of Aerial Plant Surfaces. Academic Press, New York.

    Google Scholar 

  • Caldwell, D.E. and Lawrence, J.R. 1986. Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layer of surface microenvironments. Microbial Ecology 12:299–312.

    Article  Google Scholar 

  • Clark, E. and Lindow, S.E. 1989. Indoleacetic acid production by epiphytic bacteria associated with pear fruit russetting. Phytopathology 79:1191.

    Google Scholar 

  • Clarke, P.H. and Ornston, N. 1975. Metabolic pathways and regulation: II. pp. 263–340 in Clarke, P.H. and Richmond, H. (editors), Genetics and Biochemistry of Pseudomonads. John Wiley and Sons, New York.

    Google Scholar 

  • Coplin, D.L. and Cook, D. 1990. Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Molecular Plant-Microbe Interactions 3:271–279.

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., and Marrie, T.J. 1987. Bacterial biofilms in nature and disease. Annual Review of Microbiology 41:435–464.

    Article  PubMed  CAS  Google Scholar 

  • de Cleene, M. 1989. Scanning electron microscopy of the establishment of compatible and incompatible Xanthomonas campestris pathovars on the leaf surface of Italian ryegrass and maize. EPPO Bulletin 19:81–88.

    Article  Google Scholar 

  • Dickinson, C.H. 1986. Adaptations of micro-organisms to climatic conditions affecting aerial plant surfaces, pp. 77–100 in Fokkema, N.J. and van den Heuvel, J. (editors), Microbiology of the Phyllosphere. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ernstsen, A., Sandberg, G., Crozier, A., and Wheeler, C.T. 1987. Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171:422–428.

    Article  CAS  Google Scholar 

  • Fett, W.F. 1985. Relationship of bacterial cell surface hydrophobicity and charge to pathogenicity, physiological race, and immobilization in attached soybean leaves. Phytopathology 75:1414–1418.

    Article  Google Scholar 

  • Fett, W.F., Osman, S.F., and Dunn, M.F. 1987. Auxin production by plant pathogenic Pseudomonads and Xanthomonads. Applied and Environmental Microbiology 53:1839–1845.

    PubMed  CAS  Google Scholar 

  • Fett, W.F., Osman, S.F., and Dunn, M.F. 1989. Characterization of exopolysaccharides produced by plant-associated fluorescent pseudomonads. Applied and Environmental Microbiology 55:579–583.

    PubMed  CAS  Google Scholar 

  • Gibbins, L.N. and Peterson, D.L. 1978. Responses of Erwinia herbicola Y46 and a non-pigmented mutant to ultraviolet radiation and visible light: survival curves and photoreactivation. pp. 443–450 in Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria. Institut National de la Recherche Agronomique, Angers, France.

    Google Scholar 

  • Goodfellow, M. and Austin, B. 1976. Numerical taxonomy of some yellow-pigmented bacteria isolated from plants. Journal of General Microbiology 97:219–233.

    PubMed  CAS  Google Scholar 

  • Haefele, D. M. and Lindow S.E. 1987. Flagellar motility confers epiphytic fitness advantages to Pseudomonas syringae. Applied and Environmental Microbiology 53:2528–2533.

    PubMed  CAS  Google Scholar 

  • Hallam, N.D. and Juniper, B.E. 1971. The anatomy of the leaf surface, pp. 3–39 in Preece, T.F. and Dickinson, C.H. (editors), Ecology of Leaf Surface Microorganisms. Academic Press, New York.

    Google Scholar 

  • Hattermann, D.R. and Ries, S.M. 1989. Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289.

    Article  Google Scholar 

  • Hattingh, M.J., Beer, S.V., and Lawson, E.W. 1986. Scanning electron microscopy of apple blossoms colonized by Erwinia amylovora and Erwinia herbicola. Phytopathology 76:900–904.

    Article  Google Scholar 

  • Hickman, M.J., Orser, C.S., Willis, D.K., Lindow, S.E., and Panopoulos, N.J. 1987. Molecular cloning and biological characterization of the recA gene from Pseudomonas syringae pv. syringae. Journal of Bacteriology 169:2906–2910.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S. and Upper, C.D. 1989. Diel variation in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets. Applied and Environmental Microbiology 55:623–630.

    PubMed  CAS  Google Scholar 

  • Hirano, S.S., Baker, L.S., and Upper, C.D. 1985. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiology 77:259–265.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, W.J. 1987. Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Applied and Environmental Microbiology 53:1051–1055.

    PubMed  CAS  Google Scholar 

  • Jagger, J. 1981. Near-UV radiation effects on micro-organisms. Photochemistry and Photobiology 34:761–768.

    PubMed  CAS  Google Scholar 

  • Jeffree, C.E., Baker, E.A., and Holloway, P.J. 1976. Origins of the fine structure of plant epicuticular waxes, pp. 119–158 in Dickinson, C.H. and Preece, T.F. (editors), Microbiology of Aerial Plant Surfaces. Academic Press, London.

    Google Scholar 

  • Juniper, B.E., and Cox, G.C. 1973. The anatomy of the leaf surface: the first line of defense. Pesticide Science 4:543–561.

    Article  Google Scholar 

  • Kearney, B. and Staskawicz, B.J. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346:385–386.

    Article  PubMed  CAS  Google Scholar 

  • Krinsky, N.I. 1976. Cellular damage initiated by visible light, pp. 209–239 in Gray, T.R.G. and Postgate, J.R. (editors), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Landfald, B. and Strom, A.R. 1986. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. Journal of Bacteriology 165:849–855.

    PubMed  CAS  Google Scholar 

  • Larsen, P.I., Sydnes, L.K., Landfald, B., and Strom, A.R. 1987. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Archives of Microbiology 147:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Le Rudulier, D., Strom, A.R., Dandekar, A.M., Smith, L.T., and Valentine, R.C. 1984. Molecular biology of osmoregulation. Science 224:1064–1068.

    Article  PubMed  Google Scholar 

  • Leben, C. 1965. Influence of humidity on the migration of bacteria on cucumber seedlings. Canadian Journal of Microbiology 11:671–676.

    Article  PubMed  CAS  Google Scholar 

  • Leben, C. 1988. Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants. Phytopathology 78:179–185.

    Article  Google Scholar 

  • Leben, C., Schroth, M.N., and Hildebrand, D.C. 1970. Colonization and movement of Pseudomonas syringae on healthy bean seedlings. Phytopathology 60:677–680.

    Article  Google Scholar 

  • Leopold, A.C. and Kriedemann, P.E. 1975. Plant Growth and Development. McGraw-Hill, New York.

    Google Scholar 

  • Lindemann, J. and Suslow, T.V. 1987. Competition between ice nucleation active wild-type and ice nucleation deficient mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77:882–886.

    Article  Google Scholar 

  • Lindemann, J. and Upper, C.D. 1985. Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology 50:1229–1232.

    PubMed  CAS  Google Scholar 

  • Lindgren, P.B., Peet, R.C., and Panopoulos, N.J. 1986. Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. Journal of Bacteriology 168:512–522.

    PubMed  CAS  Google Scholar 

  • Lindgren, P.B., Govindarajan, A.G., Frederick, R., Panopoulos, N.J., Staskawicz, B.J., and Lindow, S.E. 1989. An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. EMBO Journal 8:1291–1301.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. 1982a. Epiphytic ice nucleation active bacteria, pp. 334–362 in Lacy, G. and Mount, M. (editors), Phytopathogenic Prokaryotes vol. 1 Academic Press, New York.

    Google Scholar 

  • Lindow, S.E. 1982b. Population dynamics of epiphytic ice nucleation active bacteria on frost sensitive plants and frost control by means of antagonistic bacteria, pp. 395–416 in Li, P.H. and Sakai, A. (editors), Plant Cold Hardiness. Academic Press, New York.

    Google Scholar 

  • Lindow, S.E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annual Review of Phytopathology 21:363–384.

    Article  Google Scholar 

  • Lindow, S.E. 1985. Ecology of Pseudomonas syringae relevant to the field use of Ice deletion mutants constructed in vitro for plant frost control, pp. 23–35 in Halvorson, H.O., Pramer, D., and Rogul, M. (editors), Engineering Organisms in the Environment: Scientific Issues. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Lindow, S.E. 1986. Strategies and practice of biological control of ice nucleation active bacteria on plants, pp. 293–311 in Fokkema, N.J. and van den Heuvel, J. (editors), Microbiology of the Phyllosphere. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lindow, S.E. 1987. Severity of pear fruit russetting associated with epiphytic indoleacetic acid-producing bacteria. Phytopathology 77:1724.

    Google Scholar 

  • Lindow, S.E. 1988. Lack of correlation of antibiosis in antagonism of ice nucleation active bacteria on leaf surfaces by non-ice nucleation active bacteria. Phytopathology 78:444–450.

    Article  Google Scholar 

  • Lindow, S.E. 1990. Bacterial ice nucleation measurements, pp. 428–434 in Klement, Z., Rudolf, K., and Sands, D. (editors), Methods in Phytobacteriology. Akademia Kiado, Budapest.

    Google Scholar 

  • Lindow, S.E. and Loper, J.E. 1990. Transcriptional activity of fluorescent siderophore genes from Pseudomonas syringae in situ on leaf and root surfaces. Phytopathology 80:982

    Google Scholar 

  • Lindow, S.E. and Panopoulos, N.J. 1988. Field tests of recombinant Ice Pseudomonas syringae for biological frost control in potato, pp. 121–138 in Sussman, M., Collins, C.H., and Skinner, F.A. (editors), Proceedings of the First International Conference on The Release of Genetically Engineered Microorganisms. Academic Press, London.

    Google Scholar 

  • Lindow, S.E., Amy, D.C., and Upper, C.D. 1978a. Distribution of ice nucleation active bacteria on plants in nature. Applied and Environmental Microbiology 36:831–838.

    CAS  Google Scholar 

  • Lindow, S.E., Amy D.C., and Upper, C.D. 1978b. Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68:523–527.

    Article  Google Scholar 

  • Lindow, S.E., Amy, D.C., and Upper, C.D. 1982. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiology 70:1084–1089.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, W.L. and Schwab, A.P. 1982. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition 5:821–840.

    Article  CAS  Google Scholar 

  • Loper, J.E. and Lindow, S.E. 1987. Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 77:1449–1454.

    Article  Google Scholar 

  • Loper, J.E. and Schroth, M.N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389.

    Article  CAS  Google Scholar 

  • Loper, J.E., Orser, C.S., Panopoulos, N.J., and Schroth, M.N. 1984. Genetic analysis of fluorescent pigment production in Pseudomonas syringae pv. syringae. Journal of General Microbiology 130:1507–1515

    CAS  Google Scholar 

  • Maki, L.R. and Willoughby, K.J. 1978. Bacteria as biogenic sources of freezing nuclei. Journal of Applied Meteorology 17:1049–1053.

    Article  Google Scholar 

  • Maki, L.R., Galyan, E.L., Chang-Chien, M., and Caldwell, D.R. 1974. Ice nucleation induced by Pseudomonas syringae. Applied and Environmental Microbiology 28:456–460.

    CAS  Google Scholar 

  • Mew, T.W. and Kennedy, B.W. 1982. Seasonal variation in populations of pathogenic pseudomonads on soybean leaves. Phytopathology 72:103–105.

    Article  Google Scholar 

  • Mew, T.W., Mew, I.C. and Huang, J.S. 1984. Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae on rice leaves. Phytopathology 74:635–641.

    Article  Google Scholar 

  • Morris, C.E. and Rouse, D.I. 1985. Role of nutrients in regulating epiphytic bacterial populations, pp. 63–82 in Windels, C.E. and Lindow, S.E. (editors), Biological Control on the Phyllosphere. American Phytopathological Society Press, St Paul, MN.

    Google Scholar 

  • Neilands, J.B. 1981. Iron absorption and transport in microorganisms. Annual Review of Nutrition 1:27–46.

    Article  PubMed  CAS  Google Scholar 

  • Neilands, J.B. and Leong, S.A. 1986. Siderophores in relation to plant growth and disease. Annual Review of Plant Physiology 37:187–208.

    Article  CAS  Google Scholar 

  • O’Brien, R.D. and Lindow, S.E. 1989. Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627.

    Article  Google Scholar 

  • Panopoulos, N.J. and Schroth, M.N. 1974. Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64:1389–1397.

    Article  Google Scholar 

  • Pieczarka, D.J. and Lorbeer, J.W. 1975. Bacterial populations on basal lettuce leaves and in soil from under lettuce plants. Phytopathology 65:509–513.

    Article  Google Scholar 

  • Raymond, K.N. and Carrano, C.J. 1979. Coordination chemistry and microbial iron transport. Archives of Chemical Research 12:183–190.

    Article  CAS  Google Scholar 

  • Raymundo, A.K. and Ries, S.M. 1981. Motility of Erwinia amylovora. Phytopathology 71:45–49.

    Article  Google Scholar 

  • Roberto, F.F. and Kosuge, T. 1987. Phytohormone metabolism in Pseudomonas syringae subsp. savastanoi. pp. 371–380 in Fox, J.E. and Jacobs, M. (editors), Molecular Biology of Plant Growth Control. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Roos, I.M. and Hattingh, M.J. 1983. Scanning electron microscopy of Pseudomonas syringae pv. morsprunorum on sweet cherry leaves. Phytopathologische Zeitschrift 108:18–25.

    Article  Google Scholar 

  • Stout, J.D. 1960a. Biological studies of some Tussock-Grassland soils: XV bacteria of two cultivated soils. New Zealand Journal of Agricultural Research 3: 214–223.

    Google Scholar 

  • Stout, J.D. 1960b. Bacteria of soil and pasture leaves at Claudlands Showgrounds. New Zealand Journal of Agricultural Research 3:413–430.

    Google Scholar 

  • Sule, S. and Seemuller, E. 1987. The role of ice formation in the infection of sour cherry leaves by Pseudomonas syringae pv. syringae. Phytopathology 77:173–177.

    Article  Google Scholar 

  • Tamaki, S., Dahlbeck, D., Staskawicz, B., and Keen, N.J. 1988. Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. Journal of Bacteriology 170:4846–4854.

    PubMed  CAS  Google Scholar 

  • Thomashow, L.S., Reeves, S., and Thomashow, M.F. 1984. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proceedings of the National Academy of Sciences USA 81:5071–5075.

    Article  CAS  Google Scholar 

  • Thomson, S.V. 1986. The role of the stigma in fire blight infections. Phytopathology 76:476–482.

    Article  Google Scholar 

  • Tukey, H.B. 1970. The leaching of substances from plants. Annual Review of Plant Physiology. 21:305–324.

    Article  CAS  Google Scholar 

  • Tuveson, R.W., Larson, R.A., and Kagan, J. 1988. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near UV light and specific phototoxic molecules. Journal of Bacteriology 170:4675–4680.

    PubMed  CAS  Google Scholar 

  • Varvaro, L. and Surico, G. 1984. Epiphytic survival of wild types of Pseudomonas syringae pv. savastanoi and their Iaa mutants on olive leaves, pp. 20–22 in Panagopoulos, C.G., Psallidas, P.G., and Alivizatos, A.S. (editors), Proceedings of the 2nd Working Group on Pseudomonas syringae pathovars. Hellenic Phytopathological Society, Athens, Greece.

    Google Scholar 

  • Weiler, E.W. and Schroder, J. 1987. Hormone genes and crown gall disease. Trends in Biochemical Sciences 12:271–275.

    Article  CAS  Google Scholar 

  • Willis, D.K., Hrabak, E.H., Lindow, S.E., and Panopoulos, N.J. 1988. Construction and characterization of Pseudomonas syringae recA mutant strains. Molecular Plant-Microbe Interactions 1:80–86.

    Article  Google Scholar 

  • Wilson, M., Epton, H.A.S., and Sigee, D.C. 1989. Erwinia amylovora infection of hawthorn blossom. II: The stigma. Journal of Phytopathology 127:15–28.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lindow, S.E. (1991). Determinants of Epiphytic Fitness in Bacteria. In: Andrews, J.H., Hirano, S.S. (eds) Microbial Ecology of Leaves. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3168-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3168-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7822-1

  • Online ISBN: 978-1-4612-3168-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics