Skip to main content

Extracellular Enzyme Activity in Eutrophic and Polyhumic Lakes

  • Chapter
Microbial Enzymes in Aquatic Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

For many years, the synthesis, secretion, and activity of extracellular enzymes of different organisms have been intensively studied by workers in many different disciplines, such as applied microbiology, biotechnology, biochemistry, and medicine (Pollock, 1962; Priest, 1977; 1984; Kreutzberg et al., 1986; Chaloupka and Krumphanzl, 1987). In aquatic sciences, the first reports on extracellular enzymes were written in middle of the 1960s (Overbeck and Babenzien, 1964; Reichardt et al., 1967; Kim and ZoBell, 1974). However, in the last decade, interest has increased in the role of microbial extracellular enzymes in natural aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amano, M., Hara, S. and Taga, N. 1982 Utilization of dissolved amino acids in seawater by marine bacteria. Marine Biology 68: 31–36.

    Article  CAS  Google Scholar 

  • Arvola, L. 1986. Spring phytoplankton of 54 small lakes in Southern Finland. Hydrobiologia 137: 125–134.

    Article  Google Scholar 

  • Azam, F. and R.E. Hodson. 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Marine Ecology Progress Series 6: 213–222.

    Article  CAS  Google Scholar 

  • Azam, F. and B.C. Cho. 1987. Bacterial utilization of organic matter in the sea. pp. 260–281 in Fletcher, M., Gray, T.R.G. and Jones, J.G. (editors), Ecology of Microbial Communities, Cambridge University Press, Cambridge.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Bengtsson, G. 1988. The impact of dissolved amino acids on protein and cellulose degradation in stream waters. Hydrobiologia 164: 97–102.

    Article  CAS  Google Scholar 

  • Billen, G. 1984. Heterotrophic utilization and regeneration of nitrogen. pp. 313–355 in Hobbie, J.E. and Williams, P.J.LeB. (editors), Heterotrophic Activity In The Sea, Plenum Press, New York.

    Google Scholar 

  • Brock, T.D. 1966. Fundamentals of Microbial Ecology. Prentince Hall, Englewood Cliffs 306 pp.

    Google Scholar 

  • Campbell, I.M. and R. Bentley. 1973. Analytical methods for the study of equilibria. Advances in Chemistry Series 117: 1–19.

    Google Scholar 

  • Cannell, R.J.P., Kellam, S.J., Owsianka, A.M. and J.M. Walker. 1987. Microalgae and Cyanobacteria as a source of glycosidase inhibitors. Journal of General Microbiology 133: 1701–1705.

    PubMed  CAS  Google Scholar 

  • Cannell, R.J.P., Kellam, S.J., Owsianka, A.M. and J.M. Walker. 1988a. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Medica 54: 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, R.J.P., Farmer, P. and J.M. Walker. 1988b. Purification and characterization of pentagalloylglucose, an a-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochemical Journal 255: 937–941.

    PubMed  CAS  Google Scholar 

  • Chaloupka, J. and V. Krumphanzl. 1987. Extracellular Enzymes of Microorganisms. Plenum Press, New York. 215 pp.

    Google Scholar 

  • Cho, B.C. and F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443.

    Article  CAS  Google Scholar 

  • Chróst, R.J. 1989. Characterization and significance of ß-glucosidase activity in lake water. Limnology and Oceanography 34: 660–672.

    Article  Google Scholar 

  • Chróst, R.J. 1990. Microbial ectoenzymes in aquatic environments. pp. 47–78 in Overbeck, J. and Chróst, R.J. (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York. 190 pp.

    Google Scholar 

  • Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, P.K. and J. Overbeck. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. Journal of Plankton Research 11: 223–242.

    Article  Google Scholar 

  • Coffin, R.B. 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnology and Oceanography 34: 531–542.

    Article  CAS  Google Scholar 

  • Crawford, C.C., Hobbie, J.E. and K.L. Webb. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563.

    Article  CAS  Google Scholar 

  • Cunningham, H.W. and R.G. Wetzel. 1989. Kinetic analysis of protein degradation by freshwater wetland sediment community. Applied and Environmental Microbiology 55: 1963–1967.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Marine Ecology Progress Series 37: 45–52.

    Article  CAS  Google Scholar 

  • Fuhrman, J. and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology 39: 1085–1095.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. and F. Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology 66: 109–120.

    Article  Google Scholar 

  • Hagihara, B. 1960. Bacterial and mold proteases. pp. 193–213 in Boyer, P.D., Lardy, H. and Myrbäck, K. (editors), The Enzymes, vol. 4. Plenum Press, New York.

    Google Scholar 

  • Haider, K. 1988. The microbial degradation of lignin and its role in the carbon cycle. Forum Mikrobiologie 11: 477–489.

    CAS  Google Scholar 

  • Hałemejko, G.Z. and R.J. Chróst. 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Archiv für Hydrobiologie 107: 1–21.

    Google Scholar 

  • Harder, W. and L. Dijkhuizen. 1982. Strategies of mixed substrate utilization in micro-organisms. Philosophical Transactions of Royal Society London 297: 459–479.

    Article  CAS  Google Scholar 

  • Haslam, E. 1974. Polyphenol-protein interactions. Biochemical Journal 139: 285–288.

    PubMed  CAS  Google Scholar 

  • Heptinstall, J., Stewart, J.C. and M. Seras. 1986. Fluorometric estimation of exo-cello-biohydrolase and β-glucosidase activities in cellulase from Aspergillus fumigatus Fresenius. Enzyme Microbiology Technology 8: 70–74.

    Article  CAS  Google Scholar 

  • Hessen, D.O. 1989. Factors determining the nutritive status and production of zooplankton in a humic lake. Journal of Plankton Research 11: 649–664.

    Article  CAS  Google Scholar 

  • Hessen, D.O. and A.K. Schartau. 1988. Seasonal and spatial overlap between dadocerans in humic lakes. Internationale Revue der gesamten Hydrobiologie 73: 379–405.

    Article  Google Scholar 

  • Hobbie, J.E. and LeB.P.J. Williams. 1984. Heterotrophic Activity In The Sea. Plenum Press, New York. 560 pp.

    Google Scholar 

  • Hollibaugh, J.T. and F. Azam. 1983. Microbial degradation of dissolved proteins in seawater. Limnology and Oceanography 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Hoppe, H.G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Marine Ecology Progress Series 11: 299–308.

    Article  CAS  Google Scholar 

  • Hoppe, H.G., Kim, S.J. and K. Gocke. 1988. Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.

    PubMed  CAS  Google Scholar 

  • Ilmavirta, V. 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

    Article  CAS  Google Scholar 

  • Jannasch, H. 1970. Threshold concentration of carbon sources limiting bacterial growth in seawater. pp. 321–330 in Hood, D.W. (editor), Symposium On Organic Matter In Natural Waters. University of Alaska Press, Fairbanks.

    Google Scholar 

  • Jansson, M., Olsson, H., and Broberg, O. 1981. Characterization of acid phosphatase in the acidified lake Gårdsjön, Sweden. Archiv für Hydrobiologie 92: 377–395.

    CAS  Google Scholar 

  • Jørgensen, N.O.G. 1982. Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Marine Ecology 8: 145–159.

    Article  Google Scholar 

  • Jørgensen, N.O.G. 1987. Free amino acids in lakes: concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnology and Oceanography 32: 97–111.

    Article  Google Scholar 

  • Keston, A.S. 1954. Occurrence of mutarotase in animals: its proposed relation to transport and reabsorption of sugars and insulin. Science 143: 698–699.

    Article  Google Scholar 

  • Kim, J. and C.E. ZoBell. 1974. Occurrence and activities of cell-free enzymes in oceanic environments. pp. 367–385 in Colwell, R.R. and Morita, R.Y. (editors), Effect Of The Ocean Environment On Microbial Activities, University Park Press, College Park.

    Google Scholar 

  • King, G.M. 1986. Characterization of β-glucosidase activity in intertidal marine sediments. Applied and Environmental Microbiology 51: 373–380.

    PubMed  CAS  Google Scholar 

  • Kirk, T.K. and R.L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annual Revue Microbiology 41: 465–505.

    Article  CAS  Google Scholar 

  • Krambeck, C. 1984. Diurnal response of microbial activity and biomass in aquatic ecosystems. pp. 502–508 in Klug, M.J. and Reddy, C.A. (editors), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington DC.

    Google Scholar 

  • Kreutzberg, G.W., Reddington, M. and H. Zimmermann. 1986. Cellular Biology of Ectoenzymes. Springer Verlag, Berlin. 313 pp.

    Google Scholar 

  • Kuenen, G. and W. Harder. 1982. Microbial competition in continuous culture. pp. 342–367 in Burns, R.G. and Slater, J.H. (editors), Experimental Microbial Ecology. Blackwell Scientific Publication, London.

    Google Scholar 

  • Kuznetsov, S.I. 1959. Die Rolle Der Mikroorganismen Im Soffkreislauf Der Seen. VEB Deutscher Verlag der Wissenschaften, Berlin. 225 pp.

    Google Scholar 

  • Kuznetsov, S.I. 1968. Recent studies on the role of microorganisms in the cycling of substances in lakes. Limnology and Oceanography 13: 211–224.

    Article  CAS  Google Scholar 

  • Lindroth, P. and K. Mopper. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldehyde. Analytical Chemistry 51: 1667–1674.

    Article  CAS  Google Scholar 

  • Little, J.E., Sjogren, R.E. and G.R. Carson. 1979. Measurement of proteolysis in natural waters. Applied and Environmental Microbiology 37: 900–908.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L.G. and K.E. Eriksson. 1985. Ecology of microbial cellulose degradation. pp. 237–299 in Marshall, K.C. (editor), Advances in Microbial Ecology, vol. 8, Plenum Press, New York.

    Google Scholar 

  • Mann, K.H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography 33: 910–930.

    Article  CAS  Google Scholar 

  • Matin, A. 1979. Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat. pp. 323–339 in Shilo, M. (editor), Strategies of Microbial Life in Extreme Environments, Verlag Chemie, Weinheim.

    Google Scholar 

  • Mayer, L.M. 1989. Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnology and Oceanography 34: 973–981.

    Article  CAS  Google Scholar 

  • McManus, J.P., Davis, K.G., Beart, J.E., Gaffney, S.H., Lilley, T.H. and Haslam, E. 1985. Polyphenol interactions. Part 1. Introduction; Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. Journal of Chemical Society Perkin Transactions 2: 1419–1438.

    Google Scholar 

  • Meffert, M.E. and J. Overbeck. 1985. Dynamics of chlorophyll and photosynthesis in natural phytoplankton associations. Archiv für Hydrobiologie 104: 219–234.

    CAS  Google Scholar 

  • Meyer-Reif, L.-A. 1986. Measurements of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Marine Ecology Progress Series 31: 143–149.

    Article  Google Scholar 

  • Meyer-Reif, L.-A. 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Applied and Environmental Microbiology 53: 1748–1755.

    Google Scholar 

  • Morita, R.Y. 1966. Marine psychrophilic bacteria. Oceanography and Marine Biology Annual Review 4: 187–203.

    Google Scholar 

  • Morita, R.Y. 1984. Substrate capture by marine heterotrophic bacteria in low nutrient waters. pp. 83–100 in Hobbie, J.E. and Williams, LeB.P.J. (editors), Heterotrophic Activity in the Sea, Plenum Press, New York.

    Google Scholar 

  • Münster, U. 1984. Distribution, dynamic and structure of free dissolved carbohydrates in the Plußsee, a North German eutrophic lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 929–935.

    Google Scholar 

  • Münster, U. 1985. Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Archiv für Hydrobiologie Supplement 70: 429–480.

    Google Scholar 

  • Münster, U. and R.J. Chróst. 1990. Origin, composition and microbial utilization of dissolved organic matter. pp. 8–46 in Overbeck, J. and Chróst, R.J. (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches, Springer Verlag, New York. 190 pp.

    Google Scholar 

  • Münster, U., Einiö, P. and J. Nurminen. 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbeiliferyl-substrates. Archiv für Hydrobiologie 115: 321–337.

    Google Scholar 

  • Nishizawa, M., Yamagishi, T., Nonaka, G.I., Nishioka, I. and M.A. Ragan. 1985. Gallotannins of the freshwater green alga Spirogyra sp. Phytochemistry 24: 2411–2413.

    Article  CAS  Google Scholar 

  • Ohle, W. 1962. Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kieler Meeresforschung 18: 107–120.

    CAS  Google Scholar 

  • Ohle, W. 1968. Chemische und mikrobiologische Aspekte des biogenen Stoffhaushaltes der Binnengewässer. Mittellungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 14: 122–133.

    Google Scholar 

  • Olsson, H. 1990. Phosphatase activity in relation to phytoplankton composition and pH in Swedish lakes. Freshwater Biology 23: 353–362.

    Article  CAS  Google Scholar 

  • Overbeck, J. and H. Babenzien. 1964. Über den Nachweis von freien Enzymen in Gewässer. Archiv für Hydrobiologie 60: 107–114.

    Google Scholar 

  • Overbeck, J. 1965. Primärproduktion und Gewässerbakterien. Naturwissenschaften 51: 145–153.

    Article  Google Scholar 

  • Overbeck, J. 1968. Prinzipielles zum Vorkommen der Bakterien im See. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 14: 134–144.

    Google Scholar 

  • Overbeck, J. 1972. A computer analysis of the distribution pattern of phytoplankton and bacteria, measurement of rate of microbial decomposition of organic matter by means of kinetic parameters and remarks on the bacterial production in a stratified lake. pp. 227–237 in Hilbricht-Ilkowska, H. and Kajak, Z. (editors), Productivity Problems of Freshwaters. Polskie Wydawnictwo Naukowe, Warszawa.

    Google Scholar 

  • Overbeck, J. 1975. Distribution pattern of uptake kinetic responses in stratified eutrophic lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19: 2600–2615.

    Google Scholar 

  • Overbeck, J. 1979. Studies on the heterotrophic function and glucose metabolism of microplankton in Plußsee. Archiv für Hydrobiologie Beihefte Ergebnisse Limnologie 13: 56–76.

    CAS  Google Scholar 

  • Overbeck, J. 1990. Aspects of aquatic microbial carbon metabolism: regulation of phosphoenolpyruvate carboxylase. pp. 79–95 in Overbeck, J. and Chróst, R.J. (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York. 190 pp.

    Google Scholar 

  • Overbeck, J. and Y. Sako. 1988. Heterotrophic bacteria-how do they adapt to limited substrates in aquatic ecosystems? Studies on regulatory mechanisms. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 1815–1820.

    Google Scholar 

  • Pigman, W. and E.F.L.J. Anet. 1972. Mutarotations and actions of acids and bases. pp. 165–193 in Pigman, W. and Horton, D. (editors), The Carbohydrates, Chemistry and Biochemistry. Academic Press, New York.

    Google Scholar 

  • Pollock, M.R. 1962. Exoenzymes. pp. 121–178 in Gunsalus, I.C. and Stanier, R.Y. (editors), The Bacteria, vol. 4. Academic Press, New York.

    Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.

    Article  Google Scholar 

  • Pomeroy, L.R. and W.J. Wiebe. 1988. Energetics of microbial food webs. Hydrobiologia 156: 7–18.

    Article  Google Scholar 

  • Priest, F.G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Review 41: 711–753.

    CAS  Google Scholar 

  • Priest, F.G. 1984. Extracellular Enzymes. Van Nostrand Reinhold (UK), Wokingham. 79 pp.

    Google Scholar 

  • Reichardt, W., Overbeck, J. and L. Steubing. 1967. Free dissolved enzymes in lake water. Nature 216: 1345–1347.

    Article  CAS  Google Scholar 

  • Riemann, B., Fuhrman, J. and F. Azam. 1982. Bacterial secondary production in freshwater measured by 3H-thymidine incorporation method. Microbial Ecology 8: 101–114.

    Article  CAS  Google Scholar 

  • Riemann, B. and M. Søndergaard. 1984. Bacterial growth in relation to phytoplankton primary production and extracellular release of organic carbon. pp. 233–248 in Robbie, E.J. and Williams, P.J.LeB. (editors), Heterotrophic Activity in the Sea. Plenum Press, New York.

    Google Scholar 

  • Riemann, B. and M. Sondergaard. 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. Journal of Plankton Research 8: 519–536.

    Article  CAS  Google Scholar 

  • Riley, J.P. and D.A. Segar. 1970. Seasonal variation of the free and combined dissolved amino acids in the Irish Sea. Journal of Marine Biological Association United Kingdom 50: 713–720.

    Article  CAS  Google Scholar 

  • Salonen, K. 1981. The ecosystem of the oligotrophic lake Pääjärvi. 2. Bacterioplankton. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 21: 448–453.

    Google Scholar 

  • Salonen, K. and T. Hammar. 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68: 246–253.

    Article  Google Scholar 

  • Salonen, K., Kononen, K. and L. Arvola. 1983. Respiration of plankton in two small polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Scavia, D. and G.A. Laird. 1987. Bacterioplankton in Lake Michigan: dynamics, control, and significance to carbon flux. Limnology and Oceanography 32: 1017–1033.

    Article  CAS  Google Scholar 

  • Sherr, B.F., Sherr, E.B. and C.S. Hopkinson. 1989. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.

    Article  Google Scholar 

  • Sieburth, McN.J. 1979. Sea Microbes. Oxford University Press, New York. 657 pp.

    Google Scholar 

  • Sigleo, A.C., Hare, P.E. and G.R. Helz. 1983. The amino acid composition of estuarine colloidal material. Estuarine and Coastal Shelf Sciences 17: 87–96.

    Article  CAS  Google Scholar 

  • Simon, M. 1985. Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Applied and Environmental Microbiology 49: 1254–1259.

    PubMed  CAS  Google Scholar 

  • Smucker, R.A. and C.K. Kim. 1987. Chitinase induction in an estuarine system. pp. 347–355 in Llevellyn, G.C. and O’Rear, C.O. (editors), Biodeterioration Research. Plenum Press, New York.

    Google Scholar 

  • Somville, M. 1984. Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Applied and Environmental Microbiology 48: 1181–1185.

    PubMed  CAS  Google Scholar 

  • Søndergaard, M., Riemann, B. and N.O.G. Jørgensen. 1985. Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332.

    Article  Google Scholar 

  • Søndergaard, M., Rieman, B., Møller-Jensen, L., Jørgensen, N.O.G., Bjørnsen, P.K., Olesen, M., Larsen, J.B., Geertz-Hensen, O., Hansen, J., Christoffersen, K., Jespersen, A.M., Andersen, F. and S. Bosselmann. 1988. Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271–286.

    Article  Google Scholar 

  • Sorokin, Y.I. 1977. The heterotrophic phase of plankton succession in the Japan Sea. Marine Biology 41: 107–117.

    Article  Google Scholar 

  • Spencer, C.M., Cai, Y., Martin, R., Gaffney, S.H., Goulding, P.N., Magnolato, D., Lilley, T.H. and E. Haslam. 1988. Polyphenol complexation-some thoughts and observations. Phytochemistry 27: 2397–2409.

    Article  CAS  Google Scholar 

  • Steinberg, C. and Münster, U., 1985. Geochemistry and ecological role of humic substances in lake water. pp. 105–145 in Aiken, G.R., McKnight, D.M., Wershaw, R.L., and McCarthy, P. (editors), Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation, and Characterization. Wiley and Sons, New York.

    Google Scholar 

  • Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Critical Reviews in Microbiology 15: 141–168.

    Article  PubMed  CAS  Google Scholar 

  • Tilbeurgh, H., Pettersson, G., Bhikabhai, R., Boeck, H. and M. Claeyssens. 1985. Studies of the cellulolytic system of Trichoderma reesei QM 9414-reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-β-glucan cellobiohydrolase. European Journal of Biochemistry 148: 329–334.

    Article  PubMed  Google Scholar 

  • Tranvik, L. 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. 1989. Bacterioplankton in humic lakes-a link between allochthonous organic matter and pelagic food webs. Ph.D. Thesis, University Lund, Sweden. 104 pp.

    Google Scholar 

  • Viikari, L., Keränen, S., Kantelinen, A. and M. Linko. 1989. Entsyymit puunjalostuksessa. Kemia-Kemi 16: 1139–1141.

    CAS  Google Scholar 

  • Wetzel, R.G. 1983. Limnology. Saunders, Philadelphia. 755 pp.

    Google Scholar 

  • Wetzel, R.G. 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bulletin of Marine Science 35: 503–509.

    Google Scholar 

  • Williams, P.J.LeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschung Sonderheft 5: 1–28.

    Google Scholar 

  • Witzel, K.P., Overbeck, H.J. and K. Moaledj. 1982. Microbial communities in Lake Plußsee—An analysis with numerical taxonomy of isolates. Archiv für Hydrobiologie 94: 38–52.

    Google Scholar 

  • Wood, T.M. 1985. Properties of the cellulolytic enzyme systems. Biochemical Society Transactions 13: 407–410.

    PubMed  CAS  Google Scholar 

  • Wood, T.M. and S.I. McCrea. 1979. Synergism between enzymes involved in the solubilization of native cellulose. Advances in Chemistry Series 181: 181–209.

    Google Scholar 

  • Wright, R.T. 1984. Dynamics of pools of dissolved organic carbon. pp. 121–154 in Hobbie, J.E. and Williams, P.J.LeB. (editors), Heterotrophic Activity in the Sea. Plenum Press, New York.

    Google Scholar 

  • Wright, R.T. 1988. A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159: 111–117.

    Article  Google Scholar 

  • Wright, R.T. and J.E. Hobbie. 1965. The uptake of organic solutes in lake water. Limnology and Oceanography 10: 22–28.

    Article  CAS  Google Scholar 

  • Wright, R.T. and J.E. Hobbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.

    Article  CAS  Google Scholar 

  • Zeikus, J.G. 1981. Lignin metabolism and the carbon cycle. pp. 211–243 in Marshall, K.C. (editor), Advances in Microbial Ecology, vol. 8. Academic Press, London.

    Google Scholar 

  • ZoBell, C. 1946. Marine Microbiology. Chronica Botanica, Waltham. 744 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Münster, U. (1991). Extracellular Enzyme Activity in Eutrophic and Polyhumic Lakes. In: Chróst, R.J. (eds) Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3090-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3090-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7793-4

  • Online ISBN: 978-1-4612-3090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics