Skip to main content

Second-Order Modeling Of Turbulent Diffusion in an Atmospheric Surface Layer

  • Chapter
Studies in Turbulence
  • 461 Accesses

Abstract

The semiempirical theories of passive admixture diffusion in the thermally stratified atmospheric surface layer are developed on the basis of second-order closures. Four different models of equations for the second-order moments including concentration fluctuation are investigated. All these models lead to gradient transport hypotheses corresponding to specific forms of the eddy-diffusivity tensor Kij = Kij(z). The dependence of dimensionless eddy diffusivities kij= Kij(z)/KM(z) (where KM(z) = u2 */ [dU/dz] is the vertical eddy viscosity) on the dimensionless height ΞΆ = z/L (where L is the Obukhov length) is determined for all the considered second-order closures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlyand, M. E., 1975, Modern Problems of Atmospheric Diffusion and Air Pollution, Gidrometeoizdat, Leningrad. (Engl, transl. by USA Environment Protection Agency, Raleigh, NC, 1976.)

    Google ScholarΒ 

  2. Businger, J. A., 1984, β€œEquations and concepts,” Atmospheric Turbulence and Air Pollution Modelling (E. T. M. Nieuwstadt, H. van Dop, eds.), 1–36, Reidel, Dordrecht

    Google ScholarΒ 

  3. Corrsin, S., 1974, β€œLimitations of gradient transport models in random walks and in turbulence” Adv. Geophys. 18A25–60

    ADSΒ  Google ScholarΒ 

  4. Gibson, M. M., Launder, B. E., 1978, β€œGround effects on pressure fluctuations in the atmospheric boundary layer,” J. Fluid Mech. 86, 491–511

    ArticleΒ  ADSΒ  MATHΒ  Google ScholarΒ 

  5. Jaffe, S., 1967, β€œA three-layer diffusion model as applied to unstable atmospheric conditions,” J. Appl. Meteor. 6, 297–302

    ArticleΒ  ADSΒ  Google ScholarΒ 

  6. Kader, B. A. and Yaglom, A. M., 1990, β€œMean fields and fluctuation moments in unstably stratified turbulent boundary layers” J. Fluid Mech. 212, 637 – 662

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  7. Launder, B. E., 1975, β€œOn the effect of gravitational field on the turbulent transport of heat and momentum,” J. Fluid Mech. 67, 569 – 581

    ArticleΒ  ADSΒ  Google ScholarΒ 

  8. Launder, B. E., 1978, β€œHeat and mass transfer” Turbulence (Topics in Applied Physics, Vol. 12; P. Bradshaw, ed.), 231–287, Springer, Berlin

    Google ScholarΒ 

  9. Launder, B. E., Reece, G. L., and Rodi, W., 1975, β€œProgress in the development of a Reynolds-stress turbulence closure,” J. Fluid Mech. 68, 537 – 566

    ArticleΒ  ADSΒ  MATHΒ  Google ScholarΒ 

  10. Lewellen, W. C., 1977, β€œUse of invariant modeling,” Handbook of Turbulence. Volume 1: Fundamentals and Applications (W. Frost, T. H. Moulden, eds.), 237–280, Plenum, NY

    Google ScholarΒ 

  11. Lewellen, W. C. and Teske, M., 1978, β€œSecond-order closure modeling of diffusion in the atmospheric boundary layer,” Boundary-Layer Meteor. 10, 69 – 90

    ADSΒ  Google ScholarΒ 

  12. Lumley, J. L., 1978a, β€œComputational modeling of turbulent flows,” Adv. Appl. Mech. 18, 123 – 176

    ArticleΒ  ADSΒ  MATHΒ  Google ScholarΒ 

  13. Lumley, J. L., 1978b, β€œSimulating turbulent transport in urban air-pollution models,” Advances in Environmental Sciences and Engineering 1 (J. R. Pfafflin, E. N. Zeigler, eds.), 103-127, Gordon and Breach, NY

    Google ScholarΒ 

  14. Lumley, J. L., 1983, β€œTurbulence modeling,” J. Appl. Mech. 50, 1097 – 1103

    ArticleΒ  ADSΒ  Google ScholarΒ 

  15. Lumley, J. L., Khajeh-Nouri, 1974, β€œComputational modeling of turbulent transport,” Adv. Geophys. 18A, 169–192

    ADSΒ  Google ScholarΒ 

  16. Lumley, J. L. and Mansfield, P., 1984, β€œSecond order modeling of turbulent transport in the surface mixed layer,” Boundary- Layer Meteor. 30, 109 – 142

    ArticleΒ  ADSΒ  Google ScholarΒ 

  17. Lumley, J. L., Van Cruyningen, I., 1985, β€œLimitations of second order modeling of passive scalar diffusion,”Frontiers in Fluid Mechanics (S. H. Davis, J. L. Lumley, eds.), 199–218, Springer, Berlin

    Google ScholarΒ 

  18. Mellor, G. and Yamada, T., 1974, β€œA hierarchy of turbulence closure models for planetary boundary layers,” J. Atmos. Sci. 31, 1791 – 1806.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  19. Mellor, G. and Yamada, T., 1982, β€œDevelopment of a turbulent closure model for geophysical fluid problems,” Rev. Geophys. Space Phys. 20, 851 – 875

    ArticleΒ  ADSΒ  Google ScholarΒ 

  20. Monin, A. S., Yaglom, A. M., 1971, Statistical Fluid Mechanics, Volume 1, MIT Press, Cambridge, MA

    Google ScholarΒ 

  21. Newman, G. R., Launder, B. E., and Lumley, J. L., 1981, β€œModelling the behaviour of homogeneous scalar turbulence,” J. Fluid Mech. 111, 217 – 232

    ArticleΒ  MathSciNetΒ  ADSΒ  MATHΒ  Google ScholarΒ 

  22. Panofsky, H. A., Dutton, J. A., 1984, Atmospheric Turbulence. Models and Methods for Engineering Applications, Wiley, NY

    Google ScholarΒ 

  23. Pasquill, F., 1974, Atmospheric Diffusion, 2nd Edition, E. Horwood, Chichester

    Google ScholarΒ 

  24. Reynolds, W. C., 1976, β€œComputation of turbulent flows,” Ann. Rev. Fluid Mech. 8, 183 – 208

    ArticleΒ  ADSΒ  Google ScholarΒ 

  25. Rodi, W., 1980, β€œEnvironmental turbulent flows,” Prediction Methods for Turbulent Flows (W. Kollmann, ed.), 259–349, Hemisphere, NY

    Google ScholarΒ 

  26. Rogers, M. M., Mansour, N. N., and Reynolds, W. C., 1989, β€œAn algebraic model for the turbulent flux of a passive scalar,” J. Fluid Mech. 203, 77 – 101

    ArticleΒ  ADSΒ  Google ScholarΒ 

  27. Sreenivasan, K. R., Tavoularis, S., Corrsin, S., 1982, β€œA test of gradient transport and its generalizations,” Turbulent Shear Flows 3 (L. J. S. Bradbury et al., eds.), 96–112, Springer, Berlin

    Google ScholarΒ 

  28. Sykes, R. I., Lewellen, W. C., and Parker, S. E., 1986, β€œA Gaussian plume model of atmospheric dispersion based on second- order closure,” J. Climate Appl. Meteor. 25, 322 – 331

    ArticleΒ  ADSΒ  Google ScholarΒ 

  29. Tavoularis, S. and Corrsin, S., 1981, β€œExperiments in nearly homogeneous turbulent shear flow with a uniform temperature gradient. Part 1,” J. Fluid Mech. 104, 311 – 347

    ArticleΒ  ADSΒ  Google ScholarΒ 

  30. Tavoularis, S. and Corrsin, S., 1985, β€œEffects of shear on the turbulent diffusivity tensor,” Intern. J. Heat Mass Transfer 28, 265 – 276

    ArticleΒ  ADSΒ  Google ScholarΒ 

  31. Tsarenko, V. M., 1984, β€œDispersion of a contaminant cloud in the neutral atmospheric surface layer,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana 20,485–494 (463-494 in English transl. of the journal)

    Google ScholarΒ 

  32. Tsarenko, V. M., 1987a, β€œSemiempirical description of turbulence in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana 23,470–479 (353-359 in English transl. of the journal)

    Google ScholarΒ 

  33. Tsarenko, V. M., 1987b, β€œModel calculation of eddy diffusivity tensor in stratified flows,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana 23, 1041–1048 (774-779 in English transl. of the journal)

    Google ScholarΒ 

  34. Tsarenko, V. M., 1989, β€œModel calculations of the Monin-Obukhov universal functions,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana 25, 115–124 (87-93 in English transl. of the journal)

    Google ScholarΒ 

  35. Tsarenko, V. M. and Yaglom, A. M., 1991, β€œSemiempirical theories of turbulence in a neutrally stratified atmospheric surface layer,” Phys. Fluids A (in the press)

    Google ScholarΒ 

  36. Wyngaard, J. C., CotΓ©, O. R., 1971, β€œThe budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer,” J. Atmos. Sci. 28, 190–201

    ArticleΒ  ADSΒ  Google ScholarΒ 

  37. Wyngaard, J. C., CotΓ©, O. R., and Izumi, Y., 1971, β€œLocal free convection, similarity, and the budgets of shear stress and heat flux,” J. Atmos. Sci. 28, 1171 – 1182

    ArticleΒ  ADSΒ  Google ScholarΒ 

  38. Yaglom, A. M., 1974, β€œData on turbulence characteristics on the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana 10, 566–586 (341-352 in English transl. of the journal)

    Google ScholarΒ 

  39. Yaglom, A. M., 1977, β€œComments on wind and temperature flux-profile relationships,” Boundary-Layer Meteor. 11, 89 – 102

    ArticleΒ  ADSΒ  Google ScholarΒ 

  40. Zeman, 0., 1981, β€œProgress in the modeling of planetary boundary layers,” Ann. Rev. Fluid Mech. 13, 253 – 272

    ArticleΒ  ADSΒ  Google ScholarΒ 

  41. Zeman, O., Lumley, J. L., 1979, β€œBuoyancy effects in turbulent boundary layers: A second order closure study,” Turbulent Shear Flows 1 (F. Durst et al., eds.), 274–295, Springer, Berlin

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tsarenko, V.M., Yaglom, A.M. (1992). Second-Order Modeling Of Turbulent Diffusion in an Atmospheric Surface Layer. In: Gatski, T.B., Speziale, C.G., Sarkar, S. (eds) Studies in Turbulence. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2792-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2792-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7672-2

  • Online ISBN: 978-1-4612-2792-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics