Skip to main content

Saprophytic and Oligotrophic Bacteria in the Plußsee

  • Chapter
Microbial Ecology of Lake Plußsee

Part of the book series: Ecological Studies ((ECOLSTUD,volume 105))

  • 74 Accesses

Abstract

Conventionally the bacterial microflora is classified into two groups, saprophytic (zymogenous, copiotrophic) and oligotrophic (autochthonous) bacteria (Winogradsky 1949). Saprophytic bacteria dominate when dissolved organic nutrients are supplied in high concentrations. Usually they grow very well on nutrient agar, from which they can be isolated also. They are widespread throughout the whole biosphere: water, soil, and air. It is doubtful whether they comprise typical aquatic bacteria (Ruttner 1932). The fraction of gram-positive bacteria in the aquatic environment is apparently rather small, and gram-negative bacteria predominate, in contrast to the high percentage of gram-positive bacteria in soil (Kusnetzov 1959). Furthermore, the fraction of spore-forming bacteria in aquatic environments corresponds with the trophic state of the water: the more eutrophic a lake, the smaller the part of spore-forming bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Austin B, Allen DA, Mills AL, Colwell RR (1977) Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary. Can J Microbiol 23:1433–1447

    Article  PubMed  CAS  Google Scholar 

  • Babenzien HD (1964) Hydrobiologische Untersuchungen im Stechlinsee. Limnologica 2:9–34

    Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090

    Article  Google Scholar 

  • Bölter M (1977) Numerical taxonomy and character analysis of saprophytic bacteria isolated from the Kiel Fjord and Kiel Bight. In Rheinheimer G (ed) Microbial Ecology of a Brackish Water Environment. Springer-Verlag, Berlin, pp. 148–176

    Google Scholar 

  • Buck JD (1974) Effects of medium composition of the recovery of bacteria from seawater. J Exp Mar Biol Ecol 15:25–34

    Article  Google Scholar 

  • Chróst RJ, Faust MA (1980) Molecular weight fractionation of dissolved organic matter (DOM) released by phytoplankton. Acta Microbiol Pol 29:79–88

    PubMed  Google Scholar 

  • Chróst RJ, Faust MA (1983) Organic carbon release by phytoplankton: Its composition and utilization by bacterioplankton. J Plankton Res 5:477–493

    Article  Google Scholar 

  • Cole JJ, Likens GE, Strayer DL (1982) Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnol Oceanogr 27:1080–1090

    Article  CAS  Google Scholar 

  • Collins VG (1963) The distribution and ecology of bacteria in freshwater. Proc Soc Wat Treat Examin 12:40–73

    Google Scholar 

  • Czeczuga B (1962) An attempt of establishing the production and numerical relations of bacterioplankton biomass. Acta Hydrobiol 4:1–20

    Google Scholar 

  • Dundas J (1974) Needs and uses of automation in environmental microbiology. In Proceedings of a Symposium on Automation in Microbiology, Nordforsk, The Scandinavian Council for Applied Research, Copenhagen, pp 61–68

    Google Scholar 

  • Fondén R (1969) Nutritional classification of some limnic bacterial populations. Oikos 20:373–383

    Article  Google Scholar 

  • Goldman CR, Gerletti M, Javornicky P, Melchiorri-Santolini U, De Amezaga E. (1968) Primary production, bacteria, phyto- and zooplankton in lake Maggiore. Correlations and relationships with ecological factors. Mem 1st Ital Idrobiol 23:49–127

    Google Scholar 

  • Goodfellow M (1968) Properties and composition of the bacterial flora of a pine forest soil. J Soil Sci 19:154–167

    Article  CAS  Google Scholar 

  • Gusewa KA (1951) Relation between phytoplankton and saprophytic bacteria in waters. Trudy Zool Inst AN SSSR 1:34–38 [in Russian]

    Google Scholar 

  • De Haan H (1974) Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwater Biol 4:301–310

    Article  Google Scholar 

  • De Haan H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol Oceanogr 22:38–44

    Article  Google Scholar 

  • Hallmann L (1961) Bakteriologie und Serologie Ausgewählte Untersuchungs-Methoden für das bakteriologische und serologische Laboratorium. Thieme-Verlag, Stuttgart

    Google Scholar 

  • Henrici AT (1937) Studies of freshwater bacteria IV. Seasonal fluctuations of lake bacteria in relation to plankton production. J Bacteriol 35:129–139

    Google Scholar 

  • Henrici AT, Johnson DE (1935) Studies on freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. J Bacteriol 30:61–93

    PubMed  CAS  Google Scholar 

  • Herbst V (1984) Physiologische Untersuchungen zur Kopplung des Stoffwechsels von Oscillatoria redekei van Goor und Begleitbakterien. Arch Hydrobiol Suppl 69:525–594

    Google Scholar 

  • Hirsch P (1958) Stoffwechselphysiologische Untersuchungen an Nocardia petroleophila n. sp. Arch Mikrobiol 29:368–393

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P (1963) Oligocarbophilie (Wachstum auf Kosten von Luftverunreinigungen) bei Mycobakterien und einigen ihnen nahestehenden Actinomyceten. Zbl Bakt 194:70–82

    Google Scholar 

  • Hirsch P (1980) Distribution and pure culture studies of morphologically distinct solar lake microorganisms. In Nissenbaum A (ed) Hypersaline Brines and Evaporine Environments. Elsevier, Amsterdam, pp 41–60

    Chapter  Google Scholar 

  • Horvarth RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    Google Scholar 

  • Ishida Y, Shibahara K, Uchida H, Kadota H (1980) Distribution of obligately oligotrophic bacteria in Lake Biwa. Bull Jpn Soc Sci Fish 46:1151–1158

    Google Scholar 

  • Jannasch HW, Jones GE (1959) Bacterial populations in sea water as determined by different methods of enumeration. Limnol Oceanogr 4:128–139

    Article  Google Scholar 

  • Jones JG (1970) Studies on freshwater bacteria: Effect of medium composition and method on estimates of bacterial population. J Appl Bacteriol 33:679–686

    PubMed  CAS  Google Scholar 

  • Jones JG (1971) Studies on freshwater bacteria: Factors which influence the population and its activity. J Ecol 59:593–613

    Article  Google Scholar 

  • Kriss AE (1961) Meeresmikrobiologie. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Kusnetzov SI (1958) Number of bacteria and formation of organic matter. Verh Int Ver Limnol 13:156–169

    Google Scholar 

  • Kusnetzov SI (1959) Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Lehtomäki M, Niemelä S (1975) Improving microbial degradation of oil in soil. Ambio 4:126–129

    Google Scholar 

  • Lighthardt B (1974) A cluster analysis of some bacteria in the water column of Green Lake, Washington. Can J Microbiol 21:392–394

    Article  Google Scholar 

  • Mallory LM, Austin B, Colwell RR (1977) Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Can J Microbiol 23:733–750

    Article  PubMed  CAS  Google Scholar 

  • Melchiorri-Santolini U (1966) Pelagic heterotrophic bacteria in the Ligurian Sea and Lago Maggiore. Mem Ist Ital Idrobiol 20:261–287

    Google Scholar 

  • Moaledj K (1975) Untersuchungen über oligocarbophile Bakterien im Plußsee. PhD Thesis, University of Kiel, Germany

    Google Scholar 

  • Moaledj K (1978) Qualitative analysis of an oligocarbophilic microflora in the Plußsee. Arch Hydrobiol 82:98–113

    Google Scholar 

  • Moaledj K, Overbeck J (1982) Verteilung der oligocarbophilen und saprophytischen Bakterien im Plußsee. Arch Hydrobiol 93:287–302

    Google Scholar 

  • Münster U, Chróst RJ (1990) Origin, composition and microbial utilization of dissolved organic matter. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 8–46

    Google Scholar 

  • Nalewajko C (1977) Extracellular release in freshwater algae and bacteria: Extracellular products of algae as a source of carbon for heterotrophs. In Cairns J (ed) Aquatic Microbial Communities. Garland, New York, pp 589–626

    Google Scholar 

  • Ohle W (1962) Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kiel Meeresforsch 18:107–120

    CAS  Google Scholar 

  • Oláh, J, Vasarhelyi R (1970) Comparative bacteriological investigation of three shallow Hungarian lakes with different trophic levels. Annal Biol Tihany 37:223–234

    Google Scholar 

  • Overbeck J (1965) Primärproduktion und Gewässerbakterien. Naturwissenschaften 51:145

    Article  Google Scholar 

  • Overbeck J (1968a) Prinzipielles zum Vorkommen der Bakterien im See. Mitt Int Ver Limnol 14:134–144

    Google Scholar 

  • Overbeck J (1968b) Bakterien im Gewässer—ein Beispiel für die gegenwärtige Entwicklung der Limnologie. Mitt aus der MPG 3:148–156

    Google Scholar 

  • Overbeck J (1974) Microbiology and biochemistry. Mitt Int Verein Limnol 20:198–228

    Google Scholar 

  • Overbeck J, Babenzien HD (1964) Bakterien und Phytoplankton eines Kleingewässers im Jahreszyklus. Z Allgem Mikrobiol 4:59–76

    Article  Google Scholar 

  • Overbeck J, Toth D (1978) Einfluß des Phosphatgehalts auf die Glucoseaufnahme bei Bakterien. Arch Hydrobiol 82:114–122

    CAS  Google Scholar 

  • Pfister RM, Burkholder PR (1965) Numerical taxonomy of some bactreria isolated from antarctic and tropical seawaters. J Bacteriol 90:863–872

    PubMed  CAS  Google Scholar 

  • Reichardt W (1974) Zur Ökophysiologic einiger Gewässerbakterien aus der Flavobacterium-Cytophaga-Gruppc. Zbl Bakt Hyg I Abt Orig A 227:85–93

    CAS  Google Scholar 

  • Rosswall T, Persson IB (1980) Functional description of bacterial populations from seven Swedish lakes. Limnologica 14:1–16

    Google Scholar 

  • Ruttner F (1932) Bericht über ältere, bisher unveröffentlichte bakteriologische Untersuchungen an den Lunzer Seen. Int Rev Ges Hydrobiol 26:438–444

    Google Scholar 

  • Schegg E (1971) Produktion und Destruktion in der trophogenen Schicht. Untersuchungen ökologischer Parameter im polytrophen Rotsee und in der mesotrophen Horwer Bucht (Vierwaldstätter See). Schweiz Z Hydrol 33:425–532

    Article  Google Scholar 

  • Sell A, Overbeck J (1992) Exudates: Phytoplankton-bacterioplankton interactions in Plußsee. J Plankton Res 14:1199–1215

    Article  Google Scholar 

  • Skerman VDB (1967) A Guide to the Identification of the Genera of Bacteria, 2nd ed. Williams & Wilkins, Baltimore

    Google Scholar 

  • Sneath HA, Sokal RR (1973) Numerical Taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Sorokin YI, Kadota H (ed) (1972) Techniques for the Assessment of Microbial Production and Decomposition in Freshwaters. IBP Handbook No 23. Blackwell, London

    Google Scholar 

  • Stabel HH (1977) Gebundene Kohlenhydrate als stabile Komponenten im Schöhsee und in Scenedesmus-Kulturen. Arch Hydrobiol Suppl 53:159–254

    CAS  Google Scholar 

  • Stabel HH, Moaledj K, Overbeck J (1979) On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Arch Hydrobiol Beih Ergeb Limnol 12:95–104

    CAS  Google Scholar 

  • Stabel HH, Steinberg C (1976) Cleavage of macromolecular allochthonous soluble organic matter. Naturwissenschaften 63:533

    Article  CAS  Google Scholar 

  • Steinberg C (1977) Schwer abbaubare, stickstoffhaltige gelöste Substanzen im Schöhsee und in Algenkulturen. Arch Hydrobiol Suppl 53:48–158

    CAS  Google Scholar 

  • Straskrabova V (1974) Seasonal occurrence of several groups of heterotrophic bacteria in two reservoirs. Int Rev Ges Hydrobiol 59:9–16

    Article  Google Scholar 

  • Strzelczyk E, Stopiacu-nski M, Donderski W (1975) Studies on metabolic activity of planktonic bacteria isolated from three lakes. Acta Microbiol Pol Ser B 7:177–183

    CAS  Google Scholar 

  • Sundh I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58:2938–2947

    PubMed  CAS  Google Scholar 

  • Sundman V (1970) Four bacterial soil populations characterized and compared by a factor analytical method. Can J Microbiol 16:455–464

    Article  PubMed  CAS  Google Scholar 

  • Tranvik L (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16:311–322

    Article  CAS  Google Scholar 

  • Waksman SA (1941) Aquatic bacteria in relation to the cycle of organic matter in lakes. In Symposium on Hydrobiology. University of Wisconsin Press, Madison, pp 86–105

    Google Scholar 

  • Winogradsky S (1949) Microbiologie du Sol—Problèmes et Méthodes. Masson, Paris

    Google Scholar 

  • Witzel KP (1990) Approaches to bacterial population dynamics. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 96–128

    Google Scholar 

  • Witzel KP, Overbeck J, Moaledj K (1982) Microbial communities in Lake Plußsee—an analysis with numerical taxonomy of isolates. Arch Hydrobiol 94:38–52

    Google Scholar 

  • ZoBell CE (1946) Marine Microbiology. A Monograph on Hydrobacteriology. Chronica Botanica, Waltham

    Google Scholar 

  • ZoBell CE, Conn JE (1940) Studies on the thermal sensitivity of marine bacteria. J Bacteriol 40:223–238

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Overbeck, J. (1994). Saprophytic and Oligotrophic Bacteria in the Plußsee. In: Overbeck, J., Chróst, R.J. (eds) Microbial Ecology of Lake Plußsee. Ecological Studies, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2606-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2606-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7604-3

  • Online ISBN: 978-1-4612-2606-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics