Skip to main content
  • 293 Accesses

Abstract

A physical theory of the scalings of turbulence must invoke physical parameters which can either be directly measured, or be estimated by plausible physical argument. Based on the recently proposed Hierarchical Structure model (She & Leveque, Phys. Rev. Lett., 73, 211), we argue that the scaling laws in developed turbulent flows are not universal. They depend on the properties of the most intermittent structures which represent a driven mechanism of the energy cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anseimet, F., Gagne, Y., Hopfinger, E.J. & Antonia R., (1984): High order velocity structure functions in turbulent shear flows, J. Fluid Mech. 140, 63.

    Article  ADS  Google Scholar 

  • Belin, F., Tabeling, P., & Willaime, H., (1996): Exponents of the structure functions in a low temperature helium experiment, Physica D., 93, 52.

    Article  MATH  Google Scholar 

  • Benzi, R., Ciliberto, S., Ruiz Chavarria, G., & Tripiccione, R., (1993): Europhys. Lett. 24, 275.

    Article  ADS  Google Scholar 

  • Benzi, R., Ciliberto, S., Baudet, C., Massaioli, F., Tripicione, R., & Succi, S., (1993): Extended self-similarity in turblent flows, Phys. Rev. E 48, 29.

    Article  ADS  Google Scholar 

  • Benzi, R., Ciliberto, S., Baudet, C., & Chavarria, G.R., (1994): On the scaling of three dimensional homogeneous and isotropic turbulence, Phys. D 80, 385.

    Article  Google Scholar 

  • Benzi, R., Biferale, L., Ciliberto, S., Struglia, M.V., & Tripiccione, R., (1995): On the intermittent energy transfer at viscous scales in turblent flows, Europhys. Lett. 32 (9), 709.

    Article  ADS  Google Scholar 

  • Benzi, R., Biferale, L., Ciliberto, S., Struglia, M.V., & Tripiccione, R., (1996a): Scaling property of turbulent flows, Phys. Rev. E 53, 3025.

    Article  ADS  Google Scholar 

  • Benzi, R., Biferale, L., Ciliberto, S., Struglia, M.V., & Tripiccione, R., (1996b): Generalized scaling in fully developed turbulence, Physica D, in press.

    Google Scholar 

  • Briscolini, M., Santangelo, P., Succi, S., & Benzi, R., (1994): Entended self-similarity in the numerical simulation of three-dimemsional homogeneous flows, Phys. Rev. E 50, 1745.

    Article  ADS  Google Scholar 

  • Cao, N., Chen, S., & She, Z.-S., (1996): Scalings and relative scalings in the Navier-Stokes turbulence, Phys. Rev. Lett. 76, 3711.

    Article  ADS  Google Scholar 

  • Chorin, A.J., (1991): Equilibrium Statistics of a Vortex Filament with Applications, Commun. Math. Phys. 41, 619.

    Article  MathSciNet  ADS  Google Scholar 

  • Chorin, A.J. & Akao, J.H., (1992): Vortex equilibria in turbulence theory and quantum analogues, Physica D 52, 403.

    Article  MathSciNet  ADS  Google Scholar 

  • Douady, S., Couder, Y., & Brachet, M.E., (1991): Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett. 67 983.

    Article  ADS  Google Scholar 

  • Dubrulle, B., (1994): Intermittency in fully developed turbulence: log-Poisson statistics and scale invariance, Phys. Rev. Lett. 73, 959.

    Article  ADS  Google Scholar 

  • Gilbert, A.D., (1993): A cascade interpretation of Lundgren’s stretched spiral vortex model for turbulent fine structure, Phys. Fluids A 5, 2831–34.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Frisch, U. & Orszag, S.A., (1990): Physics Today 1, 24.

    Article  Google Scholar 

  • Frisch, U., (1991): From global scaling, a la Kolmmogorov, to local multifractal scaling in fully developed turbelence, Proc. Roy. Soc. A 434, 89.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Herweijer, J. & van de Water, W., (1994): Universal shape of scaling functions in turbulence, Phys. Rev. Lett..

    Google Scholar 

  • Kida, S., (1991): Fluid Dyn. Res. 8.

    Google Scholar 

  • Jimenez, J., Wray, A.A., Saffman, P.G., & Rogolla, R.S., (1993): J. Fluid Mech., 255, 65.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kolmogorov, A.N., (1941): Local structure of turbulece in an incompressible viscous fluid at very large Reynolds numbers, CR. Acad. Sci. USSR 30, 299.

    Google Scholar 

  • Kolmogorov, A.N., (1962): A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers, J. Fluid Mech. 13, 82.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leveque, E. & She, Z.-S., (1995): Viscous effects on inertial range scalings in a dynamical model of turbulence, Phys. Rev. Lett., 75, 2690.

    Article  ADS  Google Scholar 

  • Leveque, E. & She, Z.-S., (1997): Cascade structures and scaling exponents in dynamical model of turbulence: measurements and comparison, Phys. Rev. E., in press.

    Google Scholar 

  • Lundgren, T.S., (1982): Phys. Fluids 25, 2193.

    Article  ADS  MATH  Google Scholar 

  • Mandelbrot, B.B., (1974): Intermittent turbulence in self similar cascades: divergence of high moments and dimensions of the carrier, J. Fluid Mech. 62, 331.

    Article  ADS  MATH  Google Scholar 

  • Meneveau, C. & Sreenivasan, K.R., (1987): Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59, 1424.

    Article  ADS  Google Scholar 

  • Nelkin, M., (1994): Advances in Physics, 43, 143.

    Article  ADS  Google Scholar 

  • Noullez, A., Wallace, G., Lempert, W., Miles, R.B., & Frisch, U., (1997): Transverse velocity increments in turbulent flow using the RELIEF technique, J. Fluid Mech., in press.

    Google Scholar 

  • Novikov, E.A., (1971): Prikl. Mat Mech. 35, 266.

    Google Scholar 

  • Novikov, E.A., (1994): Phys. Rev. E, 50, S3303.

    Article  ADS  Google Scholar 

  • Ruiz Chavarria, G., Baudet, C., & Ciliberto, S., (1995a): Hierarchy of the energy dissipation moments in fully developed turbulence, Phys. Rev. Lett. 74, 1986.

    Article  ADS  Google Scholar 

  • Ruiz Chavarria, G., Baudet, C., Benzi, R., & Ciliberto, S., (1995b): Hierarchy of the velocity structure functions in fully developed turbulence, J. Phys. II France, 5, 485–490.

    Article  Google Scholar 

  • Parisi, G. & Frisch, U., (1985): On the singularity structure of fully developed turbulence, in Turbulence and predictability of geophysical of fluid dynamics, edited by Ghil, M., Benzi, R. & Parisi, G. (North Holland, Amsterdam, 1985), p. 84.

    Google Scholar 

  • Pullin, D.I. & Saffman, P.G., (1993): On the Lundgen-Townsend model of turbulent fine-scale. Phys. Fluids 5, 126.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saffman, P.G. & Pullin, D.I., (1994): Anisotropy of the Lundgen-Townsend model of fine-scale turbulence. Phys. Fluids 6, 802.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • She, Z.-S., Jackson, E., & Orszag, S.A., (1990): Intermittent vortex structures in homogeneous isotropic turbulence, Nature, 433, 226.

    Article  ADS  Google Scholar 

  • She, Z.-S., Jackson, E., & Orszag, S.A., (1991): Structure and dynamics of homogeneous turbulence: models and simulations, Proc. R. Soc. London A, 434, 101.

    Article  ADS  MATH  Google Scholar 

  • She, Z.-S. & Leveque, E., (1994): Universal scaling laws in fully developed turbulence, Phys. Rev. Lett. 72, 336.

    Article  ADS  Google Scholar 

  • She, Z.-S. & Waymire, E.C., (1995): Quantized energy cascade and Log-Poisson statistics in fully developed turbulence, Phys. Rev. Lett., 74, 262.

    Article  ADS  Google Scholar 

  • Siggia, E., (1981): J. Fluid Mech. 107, 375.

    Article  ADS  MATH  Google Scholar 

  • Sreenivasan, K.R. & Antonia, R.A., (1997): The Phenomenology of small scale turbulence, Ann. Rev. Fluid Mech., 29, 435.

    Article  MathSciNet  ADS  Google Scholar 

  • Stolovitzky, G. & Sreenivasan, K.R., (1993): Phys. Rev. E 48, 92.

    Google Scholar 

  • Tennekes, H., (1968): Phys. Fluids 11, 669.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

She, ZS. (1998). Are Scalings of Turbulence Universal?. In: Donnelly, R.J., Sreenivasan, K.R. (eds) Flow at Ultra-High Reynolds and Rayleigh Numbers. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2230-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2230-9_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7464-3

  • Online ISBN: 978-1-4612-2230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics