Skip to main content

Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback

  • Chapter
Biomechanics and Neural Control of Posture and Movement

Abstract

The Central Nervous System is unique in its capacity to control a wide variety of tasks, ranging from standing, walking, and jumping to fine motor tasks, such as grasping and manipulating. Typically, the actions of a controller require knowledge about the system to be controlled. It is likely that the CNS takes advantage of, or at least takes into account, nonlinear dynamic features of the musculoskeletal system resulting from multiple degree-of-freedom joints, ligaments, muscles, but also kinematic and actuator redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brouwn, G.G. (2000). Postural control of the human arm. PhD thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Chen, W.J. and Poppele, R.E. (1978). Small-signal analysis of response of mammalian muscle spindles with fusimotor stimulation and a comparison with large-signal responses. J. Neurophysiol., 41:15–26.

    PubMed  CAS  Google Scholar 

  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture: 2. Controllable parameters of the muscle. Biophysics, 11:565–578.

    Google Scholar 

  • Gielen, C.C.A.M. and Houk, J.C. (1987). A model of the motor servo: incorporating nonlinear spindle receptor and muscle mechanical properties. Biol. Cybern., 57:217–231.

    Article  PubMed  CAS  Google Scholar 

  • Hasan, Z. (1983). A model of spindle afferent response to muscle stretch. J. Neurophysiol., 49:989–1006.

    PubMed  CAS  Google Scholar 

  • Hatze, H. (1976). The complete optimization of a human motion. Math. Biosc., 28:99–135.

    Article  Google Scholar 

  • Hoffer, J.A. and Andreasson, S. (1981). Regulation of soleus muscle stiffness in premammillary cats: are flexive and reflex components. J. Neurophysiol., 45:267–285.

    PubMed  CAS  Google Scholar 

  • Kirsch, R.F., Kearney, R.E. and MacNeil, J.B. (1993). Identification of time-varying dynamics of the human triceps surae stretch reflex: 1. Rapid isometric contraction. Exp. Brain Res., 97:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A., Hogan, N., Bizzi, E. (1985). Neural and geometric factors subserving arm posture. J. Neurosci., 5:2732–2743.

    PubMed  CAS  Google Scholar 

  • Otten, B. (1988). Concepts and models of functional architecture in skeletal muscle. Exerc. Sport Sci. Rev., 16:89–137.

    Article  PubMed  CAS  Google Scholar 

  • Otten, E., Scheepstra, K.A. and Hulliger, M. (1994). An integrated model of the mammalian muscle spindle.

    Google Scholar 

  • Rozendaal, L.A. (1997). Stability of the Shoulder: Intrinsic Muscle Properties and Reflexive Control. PhD thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Schaafsma, A., Otten, B., and Van Willigen, J.D. (1991). A muscle spindle model for primary afferent firing based on a simulation of intrafusal mechanical events. J. Neurophysiol., 65:1297–1312.

    PubMed  CAS  Google Scholar 

  • Van der Helm, F.G.T., Veeger, H.E.J., Pronk, G.M., Van der Woude, L.H.V. and Rozendal, R.H. (1992). Geometry parameters for musculoskeletal modelling of the shoulder mechanism. J. Biomech., 25:129–144.

    Article  PubMed  Google Scholar 

  • Winters, J.M. (1995). An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models. Ann. Biomed. Eng., 23:359–374.

    Article  PubMed  CAS  Google Scholar 

  • Winters, J.M. and Stark, L. (1985a). Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng., 32:826–839.

    Article  PubMed  CAS  Google Scholar 

  • Winters, J.M. and Stark, L. (1985b). Task-specific second-order movement models are encompassed by a global eighth-order nonlinear musculo-Skeletal model. Proc. IEEE Eng. Med. Biol., CH2253-3/85, pp. 1111–1115. Chicago.

    Google Scholar 

  • Zahalak, G.I. (1981). A distribution-moment approximation for kinetic theories of muscular contraction. Math. Biosc., 55:89–114.

    Article  Google Scholar 

  • Zajac, F.E. (1989). Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. CRC Crit. Rev. Biomed. Eng., 17:359–419.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

van der Helm, F.C.T., Rozendaal, L.A. (2000). Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback. In: Winters, J.M., Crago, P.E. (eds) Biomechanics and Neural Control of Posture and Movement. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2104-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2104-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7415-5

  • Online ISBN: 978-1-4612-2104-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics