Skip to main content

Observations in Adaptive Refinement Strategies for Optimal Design

  • Chapter
Computational Methods for Optimal Design and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 24))

Abstract

Many optimal design problems can be described as seeking the maximum/minimum of a design objective function that depends on design parameters through the solution of a partial differential equation. We demonstrate several advantages in using adaptive refinement strategies to approximate this PDE. For example, error estimates which are used to perform the mesh refinement can be used to get estimates on how well the objective function and its gradient are being approximated. These estimates can be used in selecting appropriate stopping criteria in the algorithm.

This work supported in part by the Air Force Office of Scientific Research under Grant F49620–96–1–0329.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering,142:188, 1997.

    Article  MathSciNet  Google Scholar 

  2. C. Bischof, A. Carle, A. Griewank, and P. Hovland. ADIFOR: Generating derivative codes from Fortran programs. Technical Report MCS-P263–0991, Mathematics and Computer Science Division, Argonne National Laboratory, IL and Center for Research on Parallel Computation, Rice University, TX, 1991.

    Google Scholar 

  3. J. Borggaard. The Sensitivity Equation Method for Optimal Design. PhD thesis, Virginia Tech, Blacksburg, VA, December 1994.

    Google Scholar 

  4. J. Borggaard. On the presence of shocks in domain optimization of Euler flows. In M. Gunzburger, editor, Flow Control, volume 68 of Proceedings of the IMA. Springer-Verlag, 1995.

    Google Scholar 

  5. J. Borggaard and J. Burns. Asymptotically consistent gradients in optimal design. In N. Alexandrov and M. Hussaini, editors, Multidisciplinary Design Optimization: State of the Art, pages 303–314, Philadelphia, PA, 1997. SIAM Publications.

    Google Scholar 

  6. J. Borggaard and J. Burns. A PDE sensitivity equation method for optimal aerodynamic design. Journal of Computational Physics, 136(2):366–384, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Borggaard, J. Burns, E. Cliff, and M. Gunzburger. Sensitivity calculations for a 2D, inviscid, supersonic forebody problem. In H.T. Banks, R. Fabiano, and K. Ito, editors, Identification and Control of Systems Governed by Partial Differential Equations, pages 14–24, Philadelphia, PA, 1993. SIAM Publications.

    Google Scholar 

  8. J. Borggaard and D. Pelletier. On adaptive shape sensitivity calculations for optimal design. Computer Methods in Applied Mechanics and Engineering. submitted.

    Google Scholar 

  9. G. Bugeda and J. Oliver. A general methodology for structural shape optimization problems using automatic adaptive remeshing. International Journal for Numerical Methods in Engineering, 36:3161–3185, 1993.

    Article  MATH  Google Scholar 

  10. G. Bugeda and E. Onate. Optimum Aerodynamic Shape Design Including Mesh Adaptivity. International Journal for Numerical Methods in Fluids, 20:915–934, 1995.

    Article  MATH  Google Scholar 

  11. J. Burkardt and J. Peterson. Control of steady incompressible 2D channel flow. In M. Gunzburger, editor, Flow Control, volume 68 of Proceedings of the IMA. Springer-Verlag, 1995.

    Google Scholar 

  12. G.C. Buscaglia, R.A. Feijoo. A and C. Padra posteriori error estimation in sensitivity analysis. Structural Optimization, 9:194–199, 1995.

    Article  Google Scholar 

  13. R.G. Carter. Numerical optimization in Hilbert space using inexact function and gradient evaluations. Technical Report 89–45, ICASE, 1989.

    Google Scholar 

  14. A. Dadone and B. Grossman. Progressive optimization of fluid dynamic design problems. In Proc. 35th AIAA Aerospace Sciences Meeting and Exhibit, pages 168–181, 1997. AIAA paper AIAA-168–181.

    Google Scholar 

  15. J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, New Jersey, 1983.

    MATH  Google Scholar 

  16. J.-F. Hetu and D. Pelletier. Adaptive remeshing for viscous incompressible flows. AIAA Journal, 30(8):1986–1992, 1992.

    Article  MATH  Google Scholar 

  17. J.-F. Hetu and D. Pelletier. Fast, adaptive finite element scheme for viscous incompressible flows. AIAA Journal, 30(11):2677–2682, 1992.

    Article  MATH  Google Scholar 

  18. F. Ilinca and D. Pelletier. A unified approach for adaptive solutions of compressible and incompressible flows. In Proc. AIAA 35th Aerospace Sciences Meeting and Exhibit, 1997. AIAA paper 97–0330.

    Google Scholar 

  19. J.J. More. Recent developments in algorithms and software for trust region methods. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming: The State of the Art, Berlin, 1983. Springer-Verlag.

    Google Scholar 

  20. D. Pelletier, J.-F. Hetu, and F. Ilinca. Adaptive finite element method for thermal flow problems. AIAA Journal, 32(4):741–747, 1994.

    Article  MATH  Google Scholar 

  21. D. Pelletier and F. Ilinca. Adaptive remeshing for mixed convection. AIAA Journal of Thermophysics and Heat Transfer, 9(4):708–715, 1995.

    Article  Google Scholar 

  22. D. Pelletier and F. Ilinca. Adaptive remeshing for the k - E model of turbulence. AIAA Journal, 35(4):640–646, 1997.

    Article  MATH  Google Scholar 

  23. A. C. Taylor III, G. W. Hou, and V. M. Korivi. A Methodology for Determining Aerodynamic Sensitivity Derivatives with Respect to Variation of Geometric Shape, in Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials Conference,Baltimore, MD, 1991, AIAA paper 91–1101.

    Google Scholar 

  24. O.C. Zienkiewicz and J.Z. Zhu. A super convergent patch recovery and a posteriori error estimators. part II: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33:1365–1382, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borggaard, J., Pelletier, D. (1998). Observations in Adaptive Refinement Strategies for Optimal Design. In: Borggaard, J., Burns, J., Cliff, E., Schreck, S. (eds) Computational Methods for Optimal Design and Control. Progress in Systems and Control Theory, vol 24. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1780-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1780-0_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7279-3

  • Online ISBN: 978-1-4612-1780-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics