Skip to main content

Abstract

It is not a new idea that lipid metabolism is altered during pregnancy. Virchowl and Becquerel and Rodier2 observed lipemia during pregnancy in the 19th century and concluded that it represented an elevation in plasma lipids. It is also an old observation that certain fatty acids are essential in the diet, and it follows that the mother must supply these fatty acids to the fetus.3 What is new is the understanding of how maternal lipid metabolism adapts to the needs of fetal growth and development and how derangements in lipid metabolism can impair fetal growth and development. This knowledge has been spurred by the expansion of our understanding of lipoprotein physiology, and the awareness that lipoprotein lipid lowering can prevent arterial wall injury 4,5 This chapter describes what is known about alterations in lipid and lipoprotein metabolism in pregnancy and the ways in which altered lipid metabolism in pregnancy may affect fetal growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virchow R. Zur Entwicklungsgeschichte des Krebses: Bemerkungen uber Fettbildung im thierischen Korper und pathologische Resorption. Virchow Arch 1847;1:94.

    Article  Google Scholar 

  2. Becquerel A, Rodier A. La composition du sang. Gaz Med 1844;20:127.

    Google Scholar 

  3. Soderhjelm L. Fat absorption studies. VI. The passage of polyunsaturate fatty acids through the placenta. Acta Soc Med Up 1953;58:239–243.

    CAS  Google Scholar 

  4. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin survival study (4S). Lancet 1994;344:1383–1389.

    Google Scholar 

  5. Sheperd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995;333:(20)1301–1307.

    Article  Google Scholar 

  6. Neuringer M, Connor WE, VanPetten C. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 1984;73:272–276.

    Article  PubMed  CAS  Google Scholar 

  7. Potter J, Nestel PJ. Cholesterol balance during pregnancy. Clin Chem Acta 1978;87:57–61.

    Article  CAS  Google Scholar 

  8. Kesaniemi A, Enholm C, Miettenin TA. Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Invest 1987;80:578–581.

    Article  CAS  Google Scholar 

  9. Herrera E, Knopp RH. Pentose monophosphate shunt dehydrogenases and fatty acid synthesis in late rat pregnancy. Experientia 1972;28:646–647.

    Article  PubMed  CAS  Google Scholar 

  10. Knopp RH, Saudek CD, Arky RA, O’Sullivan JB. Two phases of adipose tissue metabolism in pregnancy: maternal adaptations for fetal growth. Endocrinology 1973;92:984–988.

    Article  PubMed  CAS  Google Scholar 

  11. Montes A, Knopp RH. Lipid metabolism in pregnancy. IV. C apoprotein changes in very low and intermediate density lipoproteins. J Clin Endocrinol Metab 1977;45:1060–1063.

    Article  PubMed  CAS  Google Scholar 

  12. Willnow TE, Sheng Z, Ishibashi S, Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 1994;264:1471–1474.

    Article  PubMed  CAS  Google Scholar 

  13. Warchawsky I, Brose GJ Jr, Schwartz AL. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor. Proc Soc Exp Biol Med 1994;91:6664–6668.

    Google Scholar 

  14. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988;240:622–630.

    Article  PubMed  CAS  Google Scholar 

  15. Brown MS, Goldstein J. Lipoprotein receptors in the liver: control signals for plasma cholesterol traffic. J Clin Invest 1983;72:743–747.

    Article  PubMed  CAS  Google Scholar 

  16. Jingami H, Yamamoto T. The VLDL receptor: wayward brother of the LDL receptor. Curr Opin Lipidol 1995;6:104–108.

    Article  PubMed  CAS  Google Scholar 

  17. Beisiegel U, St Clair RW. An emerging understanding of the interactions of plasma lipoproteins with the arterial wall that leads to the development of atherosclerosis. Curr Opin Lipidol 1996;7:265–268.

    Article  PubMed  CAS  Google Scholar 

  18. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986;232:34–47.

    Article  PubMed  CAS  Google Scholar 

  19. Coetzee GA, van der Westhuyzen DR. Lipoprotein receptors in perspective. Curr Opin Lipidol 1992;3:60–66.

    Article  CAS  Google Scholar 

  20. Francis GA, Knopp RH, Oram JF. Defective removal of cellular cholesterol and phospholipids by apolipoprotein in A-I in tangier disease. J Clin Invest 1995;96:(1)78–87.

    Article  PubMed  CAS  Google Scholar 

  21. Pietersw MN, Schouten D, VanBerkel TJC. In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport. Biochim Biophys Acta 1994;1225:125–134.

    Article  Google Scholar 

  22. Steinberg D. A docking receptor for HDL cholesterol esters. Science 1996;271:460–461.

    Article  PubMed  CAS  Google Scholar 

  23. Cheung MC, Albers JJ. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. J Biol Chem 1984;259:12201–12209.

    PubMed  CAS  Google Scholar 

  24. Johnson WJ, Bamberger ML, Latta RA, et al. The bidirectional flux of cholesterol between cells and lipoproteins: effects of phospholipid depletion on high density lipoprotein. J Biol Chem 1986;261:5766–5776.

    PubMed  CAS  Google Scholar 

  25. Ikewaki K, Nishiwaki M, Sakamoto T, et al. Increased catabolic rate of low density lipoproteins in humans with cholesterol ester transfer protein deficiency. J Clin Invest 1995;96:1573–1581.

    Article  PubMed  CAS  Google Scholar 

  26. Nishide T, Tollefson JH, Albers JJ. Inhibition of lipid transfer by a unique high density lipoprotein subclass containing an inhibitor protein. J Lipid Res 1989;30:149–158.

    Google Scholar 

  27. Albers JJ, Tu A, Wolbauer G, et al. Molecular biology of phospholipid transfer protein. Curr Opin Lipidol 1996;7:88–93.

    Article  PubMed  CAS  Google Scholar 

  28. Cheung MC, Wolfbauer G, Albers H. Plasma phospholipid mass transfer rate: relationship to plasma phospholipid and cholesterol ester transfer activities and lipid parameters. Biochim Biophys Acta 1996;1303:101–110.

    Google Scholar 

  29. Knopp RH, Zhu X, Lau J, Walden CE. Sex hormones and lipid interactions: implications for cardiovascular disease in women. Endocrinologist 1994;4;286–301.

    Article  Google Scholar 

  30. Knopp RH, Zhu X, Bonet B. Effects of estrogens on lipoprotein metabolism and cardiovascular disease in women. Atherosclerosis 1994;110:S83–S91.

    Article  PubMed  CAS  Google Scholar 

  31. Knopp RH, Zhu X, Bonet B, Bagatell C. Effects of sex steroids on lipoproteins, clotting and the arterial wall. Semin Reprod Endocrinol 1996;14:(1)15–27.

    Article  PubMed  CAS  Google Scholar 

  32. Sacks FM, Gerhard M, Walsh BW. Sex hormones, lipoproteins and vascular reactivity. Curr Opin Lipidol 1995;6:161–166.

    Article  PubMed  CAS  Google Scholar 

  33. Schaefer EJ, Foster DM, Zech LA, et al. The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab 1983; 57:262–267.

    Article  PubMed  CAS  Google Scholar 

  34. Walsh BW, Schiff I, Rosner B, et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med 1991;325:1196–1204.

    Article  PubMed  CAS  Google Scholar 

  35. Applebaum DM, Goldberg AP, Pykalisto OJ, et al. Effect of estrogen on post heparin lipolytic activity: selective decline in hepatic triglyceride lipase. J Clin Invest 1977;59:601–608.

    Article  PubMed  CAS  Google Scholar 

  36. Iverius PH, Brunzell JD. Relationship between lipoprotein lipase activity and plasma sex steroid level in obese women. J Clin Invest 1988;82:1106–1112.

    Article  PubMed  CAS  Google Scholar 

  37. Knopp RH, Walden CE, Wahl PW, et al. Oral contraceptive and postmenopausal estrogen effects on lipoprotein triglyceride and cholesterol in an adult female population: relationships to estrogen and progestin potency. J Clin Endocrinol Metab 1981;53:1123–1132.

    Article  PubMed  CAS  Google Scholar 

  38. Applebaum-Bowden D, McLean P, Steinmetz A, et al. Lipoprotein, apolipoprotein and lipolytic enzyme changes following estrogen administration in postmenopausal women. J Lipid Res 1989;30:1895–1906.

    PubMed  CAS  Google Scholar 

  39. Kovanen PT, Brown MS, Goldstein JL. Increased binding of low density lipoproteins to liver membranes from rats treated with 17a-ethinyl estradiol. J Biol Chem 1979;254:11367–11373.

    PubMed  CAS  Google Scholar 

  40. Ma PTS, Yamamoto T, Goldstein JL, Brown MS. Increased mRNA for low density lipoprotein receptor in livers of rabbits treated with 17a-ethinyl estradiol. Proc Natl Acad Sci USA 1986;83:792–796.

    Article  PubMed  CAS  Google Scholar 

  41. Hazzard WR. Primary type I hyperlipoproteinemia. In: Rifkind BM, Levy RL, eds. Hyperlipidemia-diagnosis and therapy. Orlando, FL:, 1977:137–175.

    Google Scholar 

  42. Chait A, Brunzell JD, Albers JJ, Hazzard WR. Type III hyperlipoproteinemia (“remnant removal disease”): insight into the pathogenic mechanism. Lancet 1977;1: 1176–1178.

    Article  PubMed  CAS  Google Scholar 

  43. Tikkanen MJ. Nikkila EA, Vartainen E. Natural estrogen as an effective treatment for type II hyperlipoproteinemia in postmenopausal women. Lancet 1978;2:490–492.

    Article  PubMed  CAS  Google Scholar 

  44. Wahl PW, Walden CE, Knopp RH, et al. Effect of estrogen/progestin potency on lipid/lipoprotein cholesterol. N Engl J Med 1983;308:862–867.

    Article  PubMed  CAS  Google Scholar 

  45. The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women: the postmenopausal estrogen/progestin intervention trial. JAMA 1995;273: 199–208.

    Article  Google Scholar 

  46. Arbeeny CM, Eder HA. Effects of 17a-ethinyl estradiol on the serum lipoproteins of cholesterol fed diabetic rats. J Biol Chem 1980;255:10547–10550.

    PubMed  CAS  Google Scholar 

  47. Brinton A. Oral estrogen replacement therapy in postmenopausal women selectively raises levels and production rates of lipoprotein A-I and lowers hepatic lipase activity without fractional catabolic rate. Arterioscler Thromb Vasc Biol 1996;16:431–440.

    Article  PubMed  CAS  Google Scholar 

  48. Gustafson A, Svanborg A. Gonadal steroid effects on plasma lipoproteins and individual phospholipids. J Clin Endocrinol Metab 1972;35:203–207.

    Article  PubMed  CAS  Google Scholar 

  49. Silliman K, Tall AR, Kretchmer N, Forte TM. Unusual high-density lipoprotein subclass distribution during late pregnancy. Metabolism 1993;42:(12)1592–1599.

    Article  PubMed  CAS  Google Scholar 

  50. Everson GT, Fennessey P, Kern F Jr. Contraceptive steroids alter the steady-state kinetics of bile acids. J Lipid Res 1988;29:68–76.

    PubMed  CAS  Google Scholar 

  51. Wolfe BM, Grace DM. Norethindrone acetate inhibition of splanchnic triglyceride secretion in conscious glucose-fed swine. J Lipid Res 1979;20:175–182.

    PubMed  CAS  Google Scholar 

  52. Kenagy R, Weinstein L, Heimberg M. The effects of 17b-estradiol and progesterone on the metabolism of free fatty acid by perfused livers from normal female and ovariectomized rats. Endocrinology 1981;108:1613–1621.

    Article  PubMed  CAS  Google Scholar 

  53. Khoka R, Huff MW, Wolfe BM. Divergent effects of d-norgestrel on the metabolism of rat very low density and low density apolipoprotein B. J Lipid Res 1986;27:699–705.

    Google Scholar 

  54. Tikkanen MJ, Nikkila EA. Regulation of hepatic lipase and serum lipoproteins by sex steroids. Am Heart J 1987;113:562–567.

    Article  PubMed  CAS  Google Scholar 

  55. Wolfe BM, Huff MW. Effects of combined estrogen and progestin administration on plasma lipoprotein metabolism in postmenopausal women. J Clin Invest 1989;83:40–45.

    Article  PubMed  CAS  Google Scholar 

  56. Olsson AG, Orö L, Rossner S. Effects of oxandrolone on plasma lipoproteins and the intravenous fat tolerance in man. Atherosclerosis 1974;19:337–346.

    Article  PubMed  CAS  Google Scholar 

  57. Kushlan MC, Gollan JL, Ma WL. Sex differences in hepatic uptake of long chain fatty acids in single-pass perfused rat liver. J Lipid Res 1981;22:431–436.

    PubMed  CAS  Google Scholar 

  58. Huttunen JK, Enholm C, Kekki M, Nikkila EA. Postheparin plasma lipoprotein lipase and hepatic lipase in normal subjects and in patients with hypertriglyceridemia: correlations to sex, age, and various parameters of triglyceride metabolism. Clin Sci Mol Med 1976;50:249–260.

    Google Scholar 

  59. Soler-Argilage C, Wilcox HG, Heimberg M. The effect of sex on the quantity and properties of the very low density lipoprotein secreted by the liver in vitro. J Lipid Res 1976;17:139–145.

    Google Scholar 

  60. Nikkila EA, Kekki M. Polymorphism of plasma triglyceride kinetics in normal human adult subjects. Acta Med Scand 1971;190:149–59.

    Google Scholar 

  61. Tollin C, Ericsson M, Johnson O, Backman C. Clearance of triglycerides from the circulation and its relationship to serum lipoproteins: influence of age and sex. Scand J Clin Lab Invest 1985;45:679–684.

    Article  PubMed  CAS  Google Scholar 

  62. Anonymous. The Lipid Research Clinics Population Studies data book, vol. I. 1980; NIH Publication No. 801527. Washington, DC: USDHHS.

    Google Scholar 

  63. Knopp RH, Bergelin RO, Wahl PW, et al. Population based lipoprotein lipid reference values for women classified by sex hormone usage. Am J Obstet Gynecol 1982;143:626–637.

    PubMed  CAS  Google Scholar 

  64. Knopp RH. Cardiovascular effects of endogenous and exogenous sex hormones over a woman’s lifetime. Am J Obstet Gynecol 1988;158:1630–1643.

    PubMed  CAS  Google Scholar 

  65. Walden CE, Retzlaff BM, Buck BL, et al. Lipoprotein response to the national cholesterol education program step II diet by hypercholesterolemic and combined hyperlipidemic women and men. Arterioscler Thromb Vasc Biol 1997;17:375–382.

    Article  PubMed  CAS  Google Scholar 

  66. Costrini NV, Kalkhoff RK. Relative effects of pregnancy, estradiol, and progesterone on plasma insulin and pancreatic islet insulin secretion. J Clin Invest 1971;50: 992–999.

    Article  PubMed  CAS  Google Scholar 

  67. Yki-Jarvinen H. Sex and insulin sensitivity. Metabolism 1984;33:1011–1015.

    Article  PubMed  CAS  Google Scholar 

  68. Guerre-Millo M, Leturque A, Girard J, Lavaw M. Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats. J Clin Invest 1985;76:109–116.

    Article  PubMed  CAS  Google Scholar 

  69. Merrimee TJ, Fineberg SE. Homeostasis during fasting. II. Hormone substrate difference between men and women. J Clin Endocrinol Metab 1973;37:698–702.

    Article  Google Scholar 

  70. Barclay M, Barclay RK, Skipski VP, et al. Fluctuations in human lipoproteins during the normal menstrual cycle. Biochem J 1965;96:205–209.

    PubMed  CAS  Google Scholar 

  71. Kim H, Kalkhoff RK. Changes in lipoprotein composition during the menstrual cycle. Metabolism 1979;28:663–668.

    Article  PubMed  CAS  Google Scholar 

  72. Basdevant KA, DeLignieres B, Bigorie B, Guy-Grand B. Estradiol, progesterone, and plasma lipids during the menstrual cycle. Diabetes Metab Rev 1981;7:1–4.

    CAS  Google Scholar 

  73. Mattson L, Silferstolpe G, Samsioe G. Lipid composition of serum lipoproteins in relation to gonadal hormone during the normal menstrual cycle. Eur J Obstet Gynecol Reprod Biol 1984;17:327–335.

    Article  Google Scholar 

  74. Ahumada-Hemer H, Valles De Bourges V, Juarez-Ayala J, et al. Variations in serum lipids and lipoproteins throughout the menstrual cycle. Fertil Steril 1985;44:80–84.

    PubMed  CAS  Google Scholar 

  75. Tikkanen MJ, Kuusi T, Nikkila EA, Stenman UH. Variation of postheparin plasma hepatic lipase by menstrual cycle. Metabolism 1986;35:99–104.

    Article  PubMed  CAS  Google Scholar 

  76. Woods M, Schaefer EJ, Morrill A, et al. Effect of menstrual cycle phase on plasma lipids. J Clin Endocrinol Metab 1987;65:321–323.

    Article  PubMed  CAS  Google Scholar 

  77. Webb P. 24-hour energy expenditure and the menstrual cycle. Am J Clin Nutr 1986;44:614–619.

    PubMed  CAS  Google Scholar 

  78. Jones DY, Judd JT, Taylor PR, et al. Menstrual cycle effects on plasma lipids. Metabolism 1988;37:1–2.

    Article  PubMed  CAS  Google Scholar 

  79. Lussier-Cacan S, Nestruck AC, Arslanian H, et al. Influence of a triphasic oral contraceptive preparation on plasma lipids and lipoproteins. Fertil Steril 1990;53:(1)2834.

    Google Scholar 

  80. Meijer GAL, Westerterp KR, Saris WHM, ten Hoor F. Sleeping metabolic rate in relation to body composition and the menstrual cycle. Am J Clin Nutr 1992;55:637–640.

    PubMed  CAS  Google Scholar 

  81. Hytten RE, Thomson AM, Taggart N. Total body water in normal pregnancy. Obstet Gynaecol Br Commonw 1966;73:553–561.

    Article  CAS  Google Scholar 

  82. Beaton GH, Beare J, Ryu MH, et al. Protein metabolism in the pregnant rat. J Nutr 1954;54:291–304.

    PubMed  CAS  Google Scholar 

  83. Knopp RH, Childs MT, Warth MR. Dietary management of the pregnant diabetic. Curr Concepts Nutr 1979;6:119–139.

    Google Scholar 

  84. Lopez-Luna P, Munoz T, Herrera E. Body fat in pregnant rats in mid and late gestation. Life Sci 1986;39:1389–1393.

    Article  PubMed  CAS  Google Scholar 

  85. Bhatia AJ, Wade GN. Effects of pregnancy and ovarian steroids on fatty acid synthesis and uptake in Syrian hamsters. Am J Physiol 1990;260:R153–R158.

    Google Scholar 

  86. Knopp RH, Ruder HJ, Herrera E, Freinkel N. Carbohydrate metabolism in pregnancy. VII. Insulin tolerance during later pregnancy in the fed and fasted pregnant rat. Acta Endocrinol 1970;65:352–360.

    PubMed  CAS  Google Scholar 

  87. Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and b-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol 1990;162:1008–1014.

    PubMed  CAS  Google Scholar 

  88. Freinkel N. Banting lecture 1980: of pregnancy and progeny. Diabetes 1980;29:1023–1035.

    Article  PubMed  CAS  Google Scholar 

  89. Knopp RH, Montes A, Childs MT, et al. Metabolic adjustments in normal and diabetic pregnancy. Clin Obstet Gynecol 1981;24:21–49.

    Article  PubMed  CAS  Google Scholar 

  90. Knopp RH, Herrera E, Freinkel N. Carbohydrate metabolism in pregnancy. VIII. Metabolism of adipose tissue isolated from fed and fasted rats in late gestation. J Clin Invest 1970;49:1438–1446.

    Article  PubMed  CAS  Google Scholar 

  91. Elliott JA. The effect of pregnancy on the control of lipolysis in fat cells isolated from human adipose tissue. Eur J Clin Invest 1975;5:159–163.

    PubMed  CAS  Google Scholar 

  92. Herrera E, Knopp RH, Freinkel N. Carbohydrate metabolism in pregnancy. VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted pregnant rat. J Clin Invest 1969;48:2260–2272.

    Article  PubMed  CAS  Google Scholar 

  93. Metzger BE, Ravnikar V, Vileisis RA, Freinkel N. Accelerated starvation: and the skipped breakfast in late normal pregnancy. Lancet 1982;1:588–592.

    Article  PubMed  CAS  Google Scholar 

  94. Knopp RH, Magee MS. Physiological changes in pregnancy. In: Patten HD, Fuchs A, Hille B, et al., editors. Textbook of physiology. 21th ed. Philadelphia: WB Saunders, 1989:1386–1407.

    Google Scholar 

  95. Knopp RH. Hormone mediated changes in nutrient metabolism in pregnancy: a physiological basis for normal fetal development. In: Jacobsen MS, Rees JM, Golden NH, Irwin CE, eds. Adolescent nutritional disorders: prevention and treatment. N.Y.: Academy of Sciences, 1997:251–271.

    Google Scholar 

  96. Childs MT, Tollefson JH, Knopp RH, Bowden DA. Lipid metabolism in pregnancy. VIII. Effects of dietary fat vs. carbohydrate on lipoprotein and hepatic lipids and tissue triglyceride lipases. Metabolism 1981;30:27–35.

    Article  PubMed  CAS  Google Scholar 

  97. Gray JM, Greemwood MRC. Uterine and adipose lipoprotein lipase activity in hormone treated and pregnant rats. Am Physiol Soc 1983;E132–E137.

    Google Scholar 

  98. Ramirez I, Llobera M, Herrera E. Circulating triacylglycerols, lipoproteins, and tissue lipoprotein lipase activities in rat mothers and offspring during perinatal period: effect of postmaturity. Metabolism 1983;32:333–341.

    Article  PubMed  CAS  Google Scholar 

  99. Malloy S, Alousi AA. Lipoprotein lipase activity of rat and human placenta. Proc Soc Exp Biol Med 1965;119:301–306.

    Google Scholar 

  100. Bonet B, Knopp RH, Brunzell JD, Gown A. Metabolism of very low density lipoprotein triglyceride by human placental cells: the role of lipoprotein lipase. Metabolism 1992;41:596–603.

    Article  PubMed  CAS  Google Scholar 

  101. Diamant YZ, Diamant S, Freinkel N. Lipid deposition and metabolism in rat placenta during gestation. Placenta 1980;1:319–325.

    Article  PubMed  CAS  Google Scholar 

  102. Hamosh M, Clary TR, Chernick SS, Scow RO. Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta 1970;210:473–482.

    Article  PubMed  CAS  Google Scholar 

  103. Knopp RH, Boroush MA, O’Sullivan JB. Lipid metabolism in pregnancy. II. Postheparin lipolytic activity and hypertriglyceridemia in the pregnant rat. Metabolism 1975;24:481–493.

    Article  PubMed  CAS  Google Scholar 

  104. Alvarez JJ, Montelongo A, Iglesias A, et al. Longitudinal study on lipoprotein profile, high density lipoprotein subclass and postheparin lipases during gestation in women. J Lipid Res 1996;37:299–308.

    PubMed  CAS  Google Scholar 

  105. Kinnunen PKJ. Unnerus H, Ranta T, et al. Activities of postheparin plasma lipoprotein lipase and hepatic lipase during pregnancy and lactation. Eur J Clin Invest 1980;10:469–474.

    Google Scholar 

  106. Lasunción MA, Herrera E. Effect of pregnancy on the uptake of lipoprotein triglyceride fatty acids by isolated adipocytes in the rat. Biochem Biophys Res Commun 1981;98:227–233.

    Article  PubMed  Google Scholar 

  107. Argiles J, Herrera E. Appearance of circulating and tissue 14C lipids after oral 14C tripalmitate administration in the late pregnant rat. Metabolism 1989;38:104–108.

    Article  PubMed  CAS  Google Scholar 

  108. Herrera E, Lasuncion MA, Gomez-Coronado D, et al. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am J Obstet Gynecol 1988;158:1575–1583.

    PubMed  CAS  Google Scholar 

  109. McDonald-Gibson RG, Young M, Hytten RE. Changes in plasma nonesterified fatty acids and serum glycerol in pregnancy. Br J Obstet Gynaecol 1975;82:460–466.

    Article  PubMed  CAS  Google Scholar 

  110. Burt RL. Plasma nonesterified fatty acids in normal pregnancy and the puerperium. Obstet Gynecol 1960; 15:460–464.

    PubMed  CAS  Google Scholar 

  111. Subcommittee on Nutritional Status and Weight Gain During Pregnancy, Subcommittee on Dietary Intake and Nutrient Supplements During Pregnancy, Committee on Nutritional Status During Pregnancy and Lactation, Food and Nutrition Board, Institute of Medicine, National Academy of Sciences. Nutrition during pregnancy: part I weight gain, part II: nutrient supplements. Washington, DC: National Academy Press, 1997.

    Google Scholar 

  112. Hytten FE, Leitch I. The physiology of human pregnancy. 2nd ed. Oxford: Blackwell Scientific, 1971.

    Google Scholar 

  113. Baskin DG, Figlewicz DP, Woods SC, et al. Insulin in the brain. Annu Rev Physiol 1987;49:335–347.

    Article  PubMed  CAS  Google Scholar 

  114. Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science 1987;237:405–408.

    Article  PubMed  CAS  Google Scholar 

  115. Butte NF, Hopkinson JM, Nicolson MA. Leptin in human reproduction: serum leptin levels in pregnant and lactating women. J Clin Endocrinol Metab 1997;82:585–589.

    Article  PubMed  CAS  Google Scholar 

  116. Chehab FF, Lim ME, Ronghua L. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 1996;12:318–320.

    Article  PubMed  CAS  Google Scholar 

  117. Oster MH, Enders SR, Samuels SJ, et al. Megestrol acetate in patients with AIDS and cachexia. Ann Intern Med 1994;121:400–408.

    PubMed  CAS  Google Scholar 

  118. Heinrich HC, Bartels H, Heinisch B, et al. Intestinale 59 Fe-Resorption and Pralatenter Eisenmangel Während der Gravidität des Menschen. Klin Wochenschr 1968;46:199–202.

    Article  PubMed  CAS  Google Scholar 

  119. Davison JS, Davison MC, Hay DM. Gastric emptying time in late pregnancy and labour. J Obstet Gynaecol Br Commonw 1970;77:37–41.

    Article  PubMed  CAS  Google Scholar 

  120. Boyd ELM. The lipemia of pregnancy. J Clin Invest 1934;13:347–363.

    Article  PubMed  CAS  Google Scholar 

  121. Knopp RH, Montes A, Warth MR. Carbohydrate and lipid metabolism in normal pregnancy. In: Food and Nutrition Board, ed. Laboratory indices of nutritional Status in Pregnancy. Washington, DC: National Academy of Sciences, 1978:35–88.

    Google Scholar 

  122. Knopp RH, Humphrey J, Irvine S. Biphasic metabolic control of hypertriglyceridemia in pregnancy. Clin Res 1977;25:161A.

    Google Scholar 

  123. Knopp RH. Physiological and clinical significance of hyperlipidemia in pregnancy. Perspect Lipid Disord 1984;2:12–16.

    Google Scholar 

  124. Knopp RH, Warth MR, Charles D, et al. Lipoprotein metabolism in pregnancy, fat transport to the fetus and the effects of diabetes. Biol Neonate 1986;31:913–921.

    CAS  Google Scholar 

  125. Piechota W, Staszewski A. Reference ranges of lipids and apolipoproteins in pregnancy. Eur J Obstet Gynecol Reprod Biol 1992;45:27–35.

    Article  PubMed  CAS  Google Scholar 

  126. Potter JM, Nestel PJ. The hyperlipidemia of pregnancy in normal and complicated pregnancies. Am J Obstet Gynecol 1979;133:165–170.

    PubMed  CAS  Google Scholar 

  127. Fahraeus L, Larsson-Cohn U, Wallentin L. Plasma lipoproteins including high density lipoprotein subfractions during normal pregnancy. Obstet Gynecol 1985;66:468–472.

    PubMed  CAS  Google Scholar 

  128. Desoye G, Schweditsch MO, Pfeiffer KP, et al. Correlation of hormones with lipid and lipoprotein levels during pregnancy and postpartum. J Clin Endocrinol Metab 1987;64:704–712.

    Article  PubMed  CAS  Google Scholar 

  129. Loke DFM, Viegas OAC, Kek LP, et al. Lipid profiles during and after normal pregnancy. Gynecol Obstet Invest 1991;32:144–147.

    CAS  Google Scholar 

  130. Mazurkiewicz JC, Watts GF, Warburton FG, et al. Serum lipids, lipoproteins, and apolipoproteins in pregnant nondiabetic patients. J Clin Pathol 1994;47:728–731.

    Article  PubMed  CAS  Google Scholar 

  131. Uberos-Fernández J, Munoz-Hoyos A, Molina-Carballo A, et al. Lipoproteins in pregnant women before and during delivery: Influence on neonatal haemorheology. J Clin Pathol 1996;49:120–123.

    Article  PubMed  Google Scholar 

  132. Warth MR, Arky RA, Knopp RH. Lipid metabolism in pregnancy. III. Altered lipid composition in intermediate, very low, low and high density lipoprotein fractions. J Clin Endocrinol Metab 1975;41:649–655.

    Article  PubMed  CAS  Google Scholar 

  133. Steitz HO, Brockerhoff P, Holzer A, et al. Verteilungsmuster von Apolipoprotein A and B in den Lipoproteinfraktionen des Serums bei Schwangeren and Pos Partum. Z Geburtshilfe Perinatol 1987;191:243–249.

    PubMed  CAS  Google Scholar 

  134. Silliman K, Shore V, Forte TM. Hypertriglyceridemia during late pregnancy is associated with the formation of small dense low-density lipoproteins and the presence of large buoyant high-density lipoproteins. Metabolism 1994;43:1035–1041.

    Article  PubMed  CAS  Google Scholar 

  135. Zechner R, Desoye G, Schweditsch MO, et al. Fluctuations of plasma lipoprotein(a) concentrations during pregnancy and postpartum. Metabolism 1986;35:333–336.

    Article  PubMed  CAS  Google Scholar 

  136. Panteghini M, Pagani F. Serum conditions of lipoprotein(a) during normal pregnancy and postpartum. Clin Chem 1991;37:2009.

    Google Scholar 

  137. Wersch JWJ, VanMackelenbergh BAHA, Ubachs JMH. Lipoprotein(a) in smoking and non-smoking pregnant women. Scand J Clin Lab Invest 1994;54:361–364.

    Article  PubMed  CAS  Google Scholar 

  138. Berg K, Roald B, Sande H. High Lp(a) lipoprotein level in maternal serum may interfere with placental circulation and cause fetal growth retardation. Clin Genet 1994;46:52–56.

    Article  PubMed  CAS  Google Scholar 

  139. Warth MR, Knopp RH. Lipid metabolism in pregnancy. V. Interactions of diabetes, body weight, age and high carbohydrate diet. Diabetes 1977;26:1056–1062.

    PubMed  CAS  Google Scholar 

  140. McMurry MP, Connor WE, Goplerud CP. The effects of dietary cholesterol upon the hypercholesterolemia of pregnancy. Metabolism 1981;30:869–879.

    Article  PubMed  CAS  Google Scholar 

  141. Wasfi I, Weinstein I, Heimberg M. Increased formation of triglyceride from oleate in perfused livers from pregnant rats. Endocrinology 1980;107:584–590.

    Article  PubMed  CAS  Google Scholar 

  142. Otway S, Robinson DS. The significance of changes in tissue clearing-factor lipase activity in relation to the lipaemia of pregnancy. Biochem J 1968;106:677–682.

    PubMed  CAS  Google Scholar 

  143. Humphrey JL, Childs MT, Montes A, Knopp RH. Lipid metabolism in pregnancy. VII. Kinetics of chylomicron triglyceride removal in fed pregnant rat. Am J Physiol 1980;239:E81–E87.

    PubMed  CAS  Google Scholar 

  144. Lee MM, Dempsey EW. Microcirculation of the rat placenta: scanning and transmission electron microscope observations on fetal blood vessels. Am J Obstet Gynecol 1976;126:495–505.

    PubMed  CAS  Google Scholar 

  145. Shiomi M, Takashi I, Watanabe Y. Increase in hepatic low-density lipoprotein receptor activity during pregnancy in watanabe heritable lipidemic rabbits: an animal model for familial hypercholesterolemia. Biochim Biophys Acta 1987;917:92–100.

    Article  PubMed  CAS  Google Scholar 

  146. Belknap WM, Sharp C. Hepatic low density lipoprotein (LDL) clearance is reduced during pregnancy in the rat. Gastroenterol 1988;94:52A.

    Google Scholar 

  147. Belknap WM, Dietschy JM. Sterol synthesis and low density lipoprotein clearance in vivo in pregnant rat, placenta, and fetus: sources for tissue cholesterol during fetal development. J Clin Invest 1988;82:2077–2085.

    Article  PubMed  CAS  Google Scholar 

  148. Feingold KR, Wiley T, Moser AH, et al. De novo cholesterogenesis in pregnancy. J Lab Clin Med 1983;101: 256–263.

    PubMed  CAS  Google Scholar 

  149. Montes A, Humphrey J, Knopp RH. Lipid metabolism in pregnancy. VI. Lipoprotein composition and hepatic lipids in fed pregnant rat. Endocrinology 1978;103:1031–1038.

    Article  PubMed  CAS  Google Scholar 

  150. McMahan MR, Clarkson TB, Sackett GP, Rudel LL. Changes in plasma lipids and lipoproteins in Macaca nemestrina during pregnancy and the postpartum period. Proc Soc Exp Biol Med 1980;164:199–206.

    PubMed  CAS  Google Scholar 

  151. Knopp RH, Bergelin RO, Wahl PW, Walden CE. Effects of pregnancy, postpartury lactation and oral contraceptive use on the lipoprotein cholesterol triglyceride ratio. Metabolism 1985;34:893–899.

    Article  PubMed  CAS  Google Scholar 

  152. Sakuma N, Oshima T, Knopp RH. Sex hormone and lipid metabolism: effects of pregnancy on lipoprotein lipids in third trimester Japanese women and HDL apoprotein and cholesterol kinetics in the experimental rat. J Jpn Atheroscl Soc 1982;10:617–624.

    CAS  Google Scholar 

  153. Walden CE, Knopp RH, Wahl PW, et al. Sex differences in the effect of diabetes mellitus on lipoprotein triglyceride and cholesterol concentrations. N Engl J Med 1984;311:953–959.

    Article  PubMed  CAS  Google Scholar 

  154. Walden CE, Knopp RH, Wahl PW, et al. Hyperlipidemia in the Pacific Northwest Bell Telephone Company Health Survey: Lipoprotein lipid interrelationships. Arteriosclerosis 1983;3:125–131.

    Article  PubMed  CAS  Google Scholar 

  155. Lasuncibn MA, Bonet B, Knopp RH. Mechanism of the HDL, stimulation of progesterone secretion in cultured placental trophoblast. J Lipid Res 1991;32:1073–1087.

    Google Scholar 

  156. Wu YQ, Joprgensen EV, Handwerker S. High density lipoproteins stimulate placental lactogen release and adenosine 3’,5’-monophosphate (cAMP) production in human trophoblast cells: evidence for cAMP as a second messenger in human placental lactogen release. Endocrinology 1988;123:1879.

    Article  PubMed  CAS  Google Scholar 

  157. Kern F, Everson GT, DeMark B, et al. Biliary lipids, bile acids, and gallbladder function in the human female: effects of pregnancy and the ovulatory cycle. J Clin Invest 1981;1229–1242.

    Google Scholar 

  158. Montelongo A, Lasunciôn MA, Pallardo LF, Herrera E. Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women. Diabetes 1992;41:1651–1659.

    Article  PubMed  CAS  Google Scholar 

  159. McConnell KP, Sinclair RG. Passage of elaidic acid through the placenta and also into the milk of the rat. J Biol Chem 1937;118:123–129.

    CAS  Google Scholar 

  160. Shafrir E, Barash V. Placental function in maternal-fetal fat transport in diabetes. Biol Neonate 1987;51:102–112.

    Article  PubMed  CAS  Google Scholar 

  161. Battaglia FC, Hay WW Jr. Energy and substrate requirements for fetal and placental growth and metabolism. In: Beard RW, Nathanielsz PW, eds. Fetal physiology and medicine. New York: Marcel Dekker, 1984:601–628.

    Google Scholar 

  162. Hershfield MS, Nemeth AM. Placental transport of free palmitic and linoleic acids in the guinea pig. J Lipid Res 1968;9:460–468.

    PubMed  CAS  Google Scholar 

  163. Portman OW, Behrman RE, Soltys P. Transfer of free fatty acids across the primate placenta. Am J Physiol 1969; 216:143–147.

    PubMed  CAS  Google Scholar 

  164. Noble RC, Shand JH, Bell AW. Fetal to maternal transfer of palmitic and linoleic acids across the sheep placenta. Biol Neonate 1979;36:113–118.

    Article  PubMed  CAS  Google Scholar 

  165. Ruyle M, Connor WE, Anderson GJ, Lowensohn RI. Placental transfer of essential fatty acids in humans: venous-arterial difference for docosahexanoic acid in fetal umbilical erythocytes. Proc Natl Acad Sci USA 1990;87:7902–7906.

    Article  PubMed  CAS  Google Scholar 

  166. Dancis J, Jansen V, Kayden HJ, Bjornson L, Levitz M. Transfer across perfused human placenta: III. Effect of chain length on transfer of free fatty acids. Pediatr Res 1974;8:796–799.

    Article  PubMed  CAS  Google Scholar 

  167. Whaley WH, Zuspan FP, Nelson GH. Correlation between maternal and fetal plasma levels of glucose and free fatty acids. Am J Obstet Gynecol 1966;94:419421.

    Google Scholar 

  168. Sabata V, Wolf H, Lausmann S. The role of free fatty acids, glycerol, ketone bodies and glucose in the energy metabolism of the mother and fetus during delivery. Biol Neonate 1968;13:7–17.

    Article  CAS  Google Scholar 

  169. Sheath J, Grimwade HJ, Waldron K, et al. Arteriovenous nonesterified fatty acids and glycerol differences in the umbilical cord at term and their relationship to fetal metabolism. Am J Obstet Gynecol 1972;113:358–362.

    PubMed  CAS  Google Scholar 

  170. Szabo AJ, Oppermann V, Hanover B, et al. Fetal adipose tissue development: relationship to maternal free fatty acid levels. In: Camerini-Davalos RA, Cole HS, eds. Early diabetes in early life. New York: Academic Press, 1975: 167–176.

    Google Scholar 

  171. Edson JL, Hudson DG, Hull D. Evidence for increased fatty acid transfer across the placenta during a maternal fast in rabbits. Biol Neonate 1975;27:50–55.

    Article  PubMed  CAS  Google Scholar 

  172. Muller PS, Soloman F, Brown JR. Free fatty acid concentration in maternal plasma and fetal body fat content. Am J Obstet Gynecol 1964;88:196.

    Google Scholar 

  173. Freinkel N. Effects of conceptus on maternal metabolism during pregnancy. In: Leibel BS, ed. On the nature and treatment of diabetes. Amsterdam: Excerpta Medica Foundation, 1965:679–691.

    Google Scholar 

  174. Szabo AJ, deLellis R, Grimaldi RD. Triglyceride synthesis by the human placenta. I. Incorporation of labeled palmitate into placental triglycerides. Am J Obstet Gynecol 1973;115:257–266.

    PubMed  CAS  Google Scholar 

  175. Herrera E, Freinkel N. Metabolism in the liver, brain and placenta of fed and fasted and fetal rats. Horm Metab Res 1975;7:247–249.

    Article  CAS  Google Scholar 

  176. Coleman RA. The role of the placenta in lipid metabolism and transport. Semin Perinatol 1989;13:180–191.

    PubMed  CAS  Google Scholar 

  177. Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res 1987;28:1335–1341.

    PubMed  CAS  Google Scholar 

  178. Coleman RA, Haynes EB. Microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Biochem J 1984;217:391–397.

    PubMed  CAS  Google Scholar 

  179. Popjak G, Beeckmans ML. Are phospholipids transmitted through the placenta? Biochem J 1950;46:99–103.

    PubMed  CAS  Google Scholar 

  180. Popjak G. The origin of fetal lipids. Cold Spring Harb Symp Quant Biol 1954;19:200–208.

    Article  PubMed  CAS  Google Scholar 

  181. Beizenski JJ. Role of placenta in fetal lipid metabolism. Am J Obstet Gynecol 1969;104:1177.

    Google Scholar 

  182. Biezenski JJ, Carrozza J, Li JR. Role of placenta in fetal lipid metabolism. III. Formation of rabbit plasma phospholipids. Biochim Biophys Acta 1971;239:9297.

    Google Scholar 

  183. Thomas CR, Lowy C, St Hillaire RJ, et al. Studies on the placental hydrolysis and transfer of lipids to the fetal guinea pig. In: Miller RR, Thiede HA, eds. Fetal nutrition metabolism, and immunology: the role of the placenta. New York: Plenum, 1984:135–146.

    Chapter  Google Scholar 

  184. Elphick MC, Hull D. Rabbit placental clearing factor lipase and transfer to the fetus of fatty acids derived from the triglycerides injected into the mother. J Physiol (Lond) 1977;273:475–487.

    CAS  Google Scholar 

  185. Clegg R. Placental lipoprotein lipase activity in the rabbitt, rat and sheep. Comp Biochem Physiol 1981;69B: 585–591.

    CAS  Google Scholar 

  186. Hummel L, Schwartze A, Schirrmeister W, Wagner H. Maternal plasma triglycerides as a source of fetal fatty acids. Acta Biol Med Ger 1976;35:1635–1641.

    PubMed  CAS  Google Scholar 

  187. Lasunciôn MA, Testar X, Palacin M, et al. Method for the study of metabolite transfer from rat mother to fetus. Biol Neonate 1983;44:85–92.

    Article  PubMed  Google Scholar 

  188. Boyd ELM, Wilson KM. The exchange of lipids in the umbilical circulation at birth. J Clin Invest 1935;14:715.

    Article  Google Scholar 

  189. Elphick MC, Filshie GM, Hull D. The passage of fat emulsion across human placenta. Br J Obstet Gynaecol 1978;85:610–618.

    Article  PubMed  CAS  Google Scholar 

  190. Deeb SS, Motulsky A, Albers JJ. A partial cDNA clone for human apolipoprotein B. Proc Natl Acad Sci USA 1985;82:4983–4986.

    Article  PubMed  CAS  Google Scholar 

  191. Demmer LA, Lavin MS, Elovson J, et al. Tissue-specific expression and developmental regulation of the rat apolipoprotein B gene. Proc Natl Acad Sci USA 1986;83: 8102–8106.

    Article  PubMed  CAS  Google Scholar 

  192. Rothblat GH, Mahlberg FH, Johnson WJ, Philips MC. Apolipoproteins, membrane cholesterol domains and the regulation of cholesterol efflux. J Lipid Res 1992;33:1091–1097.

    Google Scholar 

  193. Stammers JP, Hull D, Silver M, et al. Release of lipid from the equine placenta during in vitro incubation. Placenta 1994;15:857–872.

    Article  PubMed  CAS  Google Scholar 

  194. Goldwater WH, Stettin D. Studies in fetal metabolism. J Biol Chem 1947;169:723–738.

    PubMed  CAS  Google Scholar 

  195. Chevalier F. Transferts et synthese du cholesterol chez le rat au cours de sa croissance. Biochim Biophys Acta 1964;84:316–339.

    Google Scholar 

  196. Pitkin RM, Connor WE, Lin DS. Cholesterol metabolism and placental transfer in the pregnant rhesus monkey. J Clin Invest 1972;51:2584–2592.

    Article  PubMed  CAS  Google Scholar 

  197. Khansi F, Merkatz I, Soloman S. The conversion of acetate to cholesterol in the fetus of the baboon and the transfer of cholesterol from mother to fetus. Endocrinology 1971;91:6–12.

    Article  Google Scholar 

  198. Lin DS, Pitkin RM, Connor WE. Placental transfer of cholesterol in the human fetus. Am J Obstet Gynecol 1977;128:735–739.

    PubMed  CAS  Google Scholar 

  199. Feingold KR, Wilet MH, MacRae G, Siperstein MD. Mevalonate metabolism in pregnant rats. Metabolism 1980;29:285–291.

    Article  PubMed  CAS  Google Scholar 

  200. Beizenski JJ. Fetal lipid metabolism. In: Wyann RM, ed. Obstetrics and gynecology annual. New York: Appleton-Century-Crofts, 1975:39–70.

    Google Scholar 

  201. Robertson AF, Sprecher H. A review of human placental lipid metabolism and transport. Acta Pediatr 1968;183:118.

    Google Scholar 

  202. Roux JF, Yoshioka T. Lipid metabolism in the fetus during development. Clin Obstet Gynecol 1970;13:595–620.

    Google Scholar 

  203. Winkel GA, Snyder JM, MacDonald PC, Simpson ER. Regulation of cholesterol and progesterone synthesis in human placental cells in culture by serum lipoproteins. Endocrinology 1980;80:1054–1060.

    Article  Google Scholar 

  204. Cummings SW, Hatley W, Simpson ER, Ohashi M. The binding of high and low density lipoproteins to human placental membrane fractions. J Clin Endocrinol Metab 1982;54:903–908.

    Article  PubMed  CAS  Google Scholar 

  205. Winkel CA, Gilmore J, MacDonald PC, Simpson ER. Uptake and degradation of lipoproteins by human trophoblastic cells in primary culture. Endocrinology 1980;107: 1892–1898.

    Article  PubMed  CAS  Google Scholar 

  206. Knopp RH, Lawson R, Li JR. Effect of high density lipoprotein on progesterone secretion by cultured placental cells. Circulation 1981;64:271 (abstract).

    Google Scholar 

  207. Albrecht ED, Henson MC, Pepe GJ. Regulation of placental low density lipoprotein uptake in baboons by estrogen. Endocrinology 1991;128:450–458.

    Article  PubMed  CAS  Google Scholar 

  208. Albrecht ED, Babischkin JS, Koos RD, Pepe GJ. Developmental increase in low density lipoprotein receptor messenger ribonucleic acid levels in placental syncytiotrophoblasts during baboon pregnancy. Endocrinology 1995;136:5540–5546.

    Article  PubMed  CAS  Google Scholar 

  209. Gwynne JT, Strauss JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev 1982;3:299–329.

    Article  PubMed  CAS  Google Scholar 

  210. Parker CR Jr, Illingworth DR, Bissonnette J, Carr BR. Endocrine changes during pregnancy in patient with homozygous familial hyperbetalipoproteinemia. N Engl J Med 1986;314:557–560.

    Article  PubMed  Google Scholar 

  211. Gdfvels ME, Coukos G, Sayegh R, et al. Regulated expression of the trophoblast a2-macroglobulin receptor/ low density lipoprotein receptor-related protein. Differentiation and cAMP modulate protein and mRNA levels. J Biol Chem 1992;267:21230–21234.

    PubMed  Google Scholar 

  212. Wittmaack FM, Gåfvels ME, Bronner M, et al. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology 1995;136:340–348.

    Article  PubMed  CAS  Google Scholar 

  213. Overbergh L, Lorent K, Torrekens S, et al. Expression of mouse alpha-macroglobulins, lipoprotein receptor-related protein, LDL receptor, apolipoprotein E, and lipoprotein lipase in pregnancy. J Lipid Res 1995;36:1774–1786.

    Google Scholar 

  214. Parinaud J, Perret B, Ribbes H, et al. High density lipoprotein utilization by human granulosa cells for progesterone synthesis in serum-free culture: respective contributions of free and esterified cholesterol. J Clin Endocrinol Metab 1987;64:409–417.

    Article  PubMed  CAS  Google Scholar 

  215. Blum CB, Davis PA, Forte RM. Elevated levels of apolipoprotein E in the high density lipoproteins of human cord blood plasma. J Lipid Res 1985;26:755–760.

    PubMed  CAS  Google Scholar 

  216. Davis PA, Forte TM, Nichols AV, Blum CB. Umbilical cord blood lipoproteins: isolation and characterization of high density lipoproteins. Arteriosclerosis 1983;3:357–365.

    Article  PubMed  CAS  Google Scholar 

  217. Rindler MJ, Traber MG, Bersinger NA, Dancis J. Synthesis and secretion of apolipoprotein E by human placenta and choriocarcinoma cell lines. Placenta 1991; 12:615–624.

    Article  PubMed  CAS  Google Scholar 

  218. Steinberg D, Parthasarathy S, Carew TE, et al. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenecity. N Engl J Med 1989;320:915924.

    Google Scholar 

  219. Bonet B, Chait A, Gown A, Knopp RH. Metabolism of modified LDL by cultured human placental cells. Atherosclerosis 1995;112:125–136.

    Article  PubMed  CAS  Google Scholar 

  220. Alsat E, Mondon F, Rebourcet R, et al. Identification of specific binding sites for acetylated low density lipoprotein in microvillous membranes from human placenta. Mol Cell Endocrinol 1985;41:229–235.

    Article  PubMed  CAS  Google Scholar 

  221. Malassine A, Alsat E, Besse C, et al. Acetylated low density lipoprotein endocytosis by human syncytiotrophoblast in culture. Placenta 1990;11:191.

    Article  PubMed  CAS  Google Scholar 

  222. Henriksen T, Evensen SA, Carlander B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand J Clin Lab Invest 1979;39:361–368.

    Article  PubMed  CAS  Google Scholar 

  223. Chisholm GM. Cytotoxicity of oxidized lipoproteins. Curr Opin Lipidol 1991;2:311–316.

    Article  Google Scholar 

  224. Hauge-Gillenwater H, Bonet B, Meekins D, Knopp RH. LDL oxidation and human placental trophoblast and macrophage cytotoxicity. Proc Soc Exp Bio Med 1998:217 (in press).

    Google Scholar 

  225. Zhu X, Knopp RH. Effect of sex steroid hormones on oxidative modification of low density lipoproteins by placental macrophages and trophoblast and their susceptibility to cytotoxicity. Circulation 1993;88:I–32(abstract).

    Google Scholar 

  226. Zhu X, Bonet B, Knoop RH. 17b-estradiol, progesterone and testosterone inversely modulate LDL oxidation and cytotoxicity in cultured placental trophoblast and macrophages. Am J Obstet Gynecol 1997;177:196–209.

    Article  PubMed  CAS  Google Scholar 

  227. Mazière C, Auclair M, Ronveaux MF, et al. Estrogens inhibit copper and cell-mediated modification of low density lipoprotein. Atherosclerosis 1991;89:175–182.

    Article  PubMed  Google Scholar 

  228. Rifci VA, Khachadurian AK. The inhibiton of low density lipoprotein oxidation by 17ß-estradiol. Metabolism 1992; 14:1110–1117.

    Article  Google Scholar 

  229. Nègre-Salvayre AM, Pieraggi T, Mabile L, Salvayre R. Protective effect of 17b-estradiol against the cytoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells. Atherosclerosis 1993;99:207–217.

    Article  PubMed  Google Scholar 

  230. Ishihara M. Studies on lipoperoxide of normal pregnant women and of patients with toxemia of pregnancy. Clin Chem Acta 1978;84:1–9.

    Article  CAS  Google Scholar 

  231. Maseki M, Nishigaki I, Hagihara M, et al. Lipid peroxide levels and lipid content of serum lipoprotein fractions of pregnant subjects with or without preeclampsia. Clin Chem Acta 1981;115:151–161.

    Google Scholar 

  232. Hubel CA, Roberts JM, Taylor RN, et al. Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol 1989;161:1025–1034.

    PubMed  CAS  Google Scholar 

  233. Bonet B, Knopp RH. Accelerated LDL oxidation in diabetic gestation. Program of the 2nd International Graz Symposium on Gestational Diabetes 1992; Abstract.

    Google Scholar 

  234. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–412.

    Article  PubMed  CAS  Google Scholar 

  235. Bowie A, Owens D, Collins P, et al. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 1993;102:63–67.

    Article  PubMed  CAS  Google Scholar 

  236. Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994;43:1010–1014.

    Article  PubMed  CAS  Google Scholar 

  237. Kitzmiller JL, Brown ER, Phillipe M, et al. Diabetic nephropathy and perinatal outcome. Am J Obstet Gynecol 1981;141:741–751.

    PubMed  CAS  Google Scholar 

  238. Hubel CA, McLaughlin MK, Evans RW, et al. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol 1996;174:975–982.

    Article  PubMed  CAS  Google Scholar 

  239. Franz H, Wendler D. A controlled study of maternal serum concentrations of lipoproteins in pregnancy-induced hypertension. Arch Gynecol Obstet 1992;252:81–86.

    Article  PubMed  CAS  Google Scholar 

  240. Rosing U, Samsioe G, Ölund A, et al. Serum levels of apolipoprotein A-I, A-II and HDL-cholesterol in second half of normal pregnancy and in pregnancy complicated by pre-eclampsia. Horm Metab Res 1989;21:276–382.

    Article  Google Scholar 

  241. Sattar N, Gaw A, Packard CJ, Greer IA. Potential pathogenic roles of aberrant lipoprotein and fatty acid metabolism in pre-eclampsia. Br J Obstet Gynaecol 1996; 103:614–620.

    Article  PubMed  CAS  Google Scholar 

  242. Zuspan FP, Samuels P. Preventing preeclampsia. N Engl J Med 1993;329:1265–1266.

    Article  PubMed  CAS  Google Scholar 

  243. Walsh SW, Wang Y. Secretion of lipid peroxides by the human placenta. Am J Obstet Gynecol 1993;169:1462–1466

    PubMed  CAS  Google Scholar 

  244. Walsh SW, Wang Y. Trophoblast and placental villous core production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. J Clin Endocrinol Metab 1995;80:1888–1893.

    Article  PubMed  CAS  Google Scholar 

  245. Branch DW, Mitchell MD, Miller E, et al. Pre-eclampsia and serum antibodies to oxidised low density lipoprotein. Lancet 1994;343:645–646.

    Article  PubMed  CAS  Google Scholar 

  246. Stamler FW. Fetal eclamptic disease of pregnant rat fed antivitamin E stress diet. Am J Pathol 1959;35:207–231.

    Google Scholar 

  247. McKay DG, Goldenberg V, Kaunitz H, Csavossy I. Experimental toxemia. An electron microscope study and review. Arch Pathol 1967;84:557–597.

    PubMed  CAS  Google Scholar 

  248. Jovanovic L, Metzger BE, Knopp RH, et al. Diabetes in Early Pregnancy Study. First trimester ß-hydroxybutyrate (ß-OH B) in Type I diabetic pregnancy compared to normal pregnancy. 1997, submitted.

    Google Scholar 

  249. Knopp RH, Magee MS, Larson MO, et al. Alternative screening tests and birth weight associations in pregnant women with abnormal glucose screening. Diabetes 1988;37:110A (abstract).

    Google Scholar 

  250. Knopp RH, Magee MS, Walden CE, et al. Prediction of infant birth weight by GDM screening tests: importance of plasma triglyceride. Diabetes Care 1992;15:1605–1613.

    Google Scholar 

  251. Skryten A, Johnson P, Samsioe G, Gustafson A. Studies in diabetic pregnancy. I. Serum lipids. Acta Obstet Gynecol Scand 1976;55:211–215.

    Article  PubMed  CAS  Google Scholar 

  252. Knopp RH, Bergelin RO, Wahl PW, Walden CE. Relationships of infant birth size to maternal lipoproteins, apoprotein, fuel, hormones, clinical chemistries and body weight at 36 weeks gestation. Diabetes 1985;34(suppl II): 71.

    PubMed  Google Scholar 

  253. Knopp RH, Chapman M, Bergelin RO, et al. Relationship of lipoprotein lipids to mild fasting hyperglycemia and diabetes in pregnancy. Diabetes Care 1980;3:416–420.

    Google Scholar 

  254. Delmis J, Ivanisevic M, Bukovic D. Placental lipid contents in gestational diabetic pregnancy. Coll Antropol 1994;18:323–327.

    Google Scholar 

  255. Hollingsworth DR, Grundy SM. Pregnancy-associated hypertriglyceridemia in normal and diabetic women. Differences in insulin-dependent, non-insulin-dependent and gestational diabetes. Diabetes 1982;31:1092–1097.

    PubMed  CAS  Google Scholar 

  256. Koukkou E, Watts GF, Lowy C. Serum lipid, lipoprotein and apolipoprotein changes in gestational diabetes mellitus: a cross-sectional and prospective study. J Clin Pathol 1996;49:634–637.

    Article  PubMed  CAS  Google Scholar 

  257. Knopp RH, Warth MR, Carroll CJ. Lipid metabolism in pregnancy. I. Changes in lipoprotein triglyceride and cholesterol in normal pregnancy and the effects of diabetes mellitus. J Reprod Med 1973;10:95–101.

    PubMed  CAS  Google Scholar 

  258. Knopp RH, Van Allen M; McNeeley M, et al. Effects of insulin dependent diabetes mellitus on plasma lipoproteins in diabetic pregnancy. J Reprod Med 1993;38:703710.

    Google Scholar 

  259. Eriksson UJ. The pathogenesis of congenital malformations in diabetic pregnancy. Diabetes Metab Rev 1995;11: 63–82.

    Article  PubMed  CAS  Google Scholar 

  260. Eriksson UJ, Siman CM. Pregnant diabetic rats fed the antioxidant butylated hydroxytoluene show decreased occurrence of malformations in offspring. Diabetes 1996; 45:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  261. Knopp RH, Walden CE, Wahl PW, et al. Effect of postpartum lactation on lipoprotein lipids and apoproteins. J Clin Endocrinol Metab 1985;60:542–547.

    Article  PubMed  CAS  Google Scholar 

  262. Chajek-Shaul T, Friedman G, Halperin G, et al. Role of lipoprotein lipase in the uptake of cholesterol ester by rat lactating mammary gland in vivo. Biochim Biophys Acta 1981;666:216–222.

    Article  PubMed  CAS  Google Scholar 

  263. Zinder O, Hamosh M, Fleck TR, Scow RO. Effect of prolactin on lipoprotein lipase in mammary glands and adipose tissue of rats. Am J Physiol 1974;226:742–748.

    PubMed  CAS  Google Scholar 

  264. Zinder O, Mendelson CR, Blanchette-Mackie EF, Scow RO. Lipoprotein lipase and uptake of chylomicron triglycerol and cholesterol perfused by rat mammary tissue. Biochim Biophys Acta 1976;431:526–537.

    Article  PubMed  CAS  Google Scholar 

  265. Hachey DL, Thomse MR, Emken EA, et al. Human lactation: maternal transfer of dietary triglycerides labelled with stable isotopes. J Lipid Res 1987;28:1185–1192.

    PubMed  CAS  Google Scholar 

  266. Hachey DL, Silber GH, Wong WW, Garza C. Human lactation. 2. Endogenous fatty acid synthesis by the mammary gland. Pediatr Res 1989;25:63–68.

    Article  PubMed  CAS  Google Scholar 

  267. Kris-Etherton PM, Frantz ID Jr. The contribution of chylomicron cholesterol to milk cholesterol in the rat. Proc Soc Exp Biol Med 1980;165:502–507.

    CAS  Google Scholar 

  268. Rebuffe-Scrive M, Enk L, Crona N, et al. Fat cell metabolism in different regions in women: effect of menstrual cycle, pregnancy and lactation. J Clin Invest 1985;75:1973–1976.

    Google Scholar 

  269. Mellies MJ, Ishikawa T, Gartside P, et al. Effects of varying maternal dietary cholesterol and phytosterol in lactating women and their infants. Am J Clin Nutr 1978; 31:1347–1354.

    PubMed  CAS  Google Scholar 

  270. Wang CS, Illingworth DR. Lipid composition and lipolytic activities in milk from a patient with homozygous familial hypobetalipoproteinemia. Am J Clin Nutr 1987;45:730–736.

    Google Scholar 

  271. Ma Y, Ooi TC, Liu M, et al. High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with E2 isoform. J Lipid Res 1994;35:1066–1075.

    PubMed  CAS  Google Scholar 

  272. Knopp RH, The Staff of the NW Lipid Research Clinic. What’s new in the nutritional management of hyperlipidemia? In: Program of the American Dietetic Association Annual Meeting, San Francisco: 1988:14.

    Google Scholar 

  273. Hsia SH, Connelly PW, Hegele RA. Successful outcome in severe pregnancy-associated hyperlipemia: a case report and literature review. Am J Med Sci 1995;309:213–218.

    Google Scholar 

  274. Kroon AA, Swinkels DW, van Dongen PWJ, Stalenhoef AFH. Pregnancy in a patient with homozygous familial hypercholesterolemia treated with long-term low-density lipoprotein apheresis. Metabolism 1994;43:1164–1170.

    Article  PubMed  CAS  Google Scholar 

  275. Bengtsson C. Ischaemic heart disease in women. Acta Med Scand 1973;549:11–28.

    Google Scholar 

  276. Montes A, Walden CE, Knopp RH, et al. Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum: possible markers for the diagnosis of “prelipidemia.” Arteriosclerosis 1984;4:407–417.

    Article  PubMed  CAS  Google Scholar 

  277. Knopp RH. Oral contraception into the 1990s. New York: Parthenon, 1989.

    Google Scholar 

  278. Knopp RH. Fuel metabolism in pregnancy. Contemp Obstet Gynec 1978;12:83–90.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knopp, R.H., Bonet, B., Zhu, X. (1998). Lipid Metabolism in Pregnancy. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics