Skip to main content

Matrix Models as Integrable Systems

  • Chapter
Particles and Fields

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The theory of matrix models is reviewed from the point of view of its relation to integrable hierarchies. Determinantal formulas, relation to conformal field models, and the theory of generalized Kontsevich model (GKN) are discussed in some detail. Attention is also paid to the group-theoretical interpretation of τ-functions which allows us to go beyond the restricted set of the (multicomponent) KP and Toda integrable hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Morozov. Integrability and matrix models. UFN, 164 (1): 3–62, 1994.

    Article  Google Scholar 

  2. A. Morozov. The string theory: what is this? UFN, 162 (8): 84–175, 1992.

    Article  Google Scholar 

  3. M. L. Kontsevich. Intersection theory on the moduli space of curves. Funk. Anal. & Prilozh., 25: 50–57, 1991. Russian.

    Article  MathSciNet  Google Scholar 

  4. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin. Unification of all string models with c < 1. Phys. Lett., 275B (3–4): 311–314, 1992; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin. Towards unified theory of 2d gravity. Nucl. Phys.,B380 (1–2): 181–240, 1992.

    Google Scholar 

  5. R. Dijkgraaf. Intersection theory, integrable hierarchies and topological field theory. In New Symmetry Principles in Quantum Field Theory, (Cargèse, 1991), volume B295 of NATO ASI, 1992. Plenum, New York, pages 95–158.

    Google Scholar 

  6. M. Kontsevich. Intersection theory on the moduli space of curves. Commun. Math. Phys.,147 (1): 1–23, 1992. Russian.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Itzykson and J.-B. Zuber. Combinatorics of the modular group. II. the Kontsevich integrals. Int. J. Mod. Phys.,A7 (1): 5661–5705, 1992.

    MathSciNet  ADS  Google Scholar 

  8. M. Adler and P. van Moerbeke. A matrix integral solution to two-dimensional wp gravity. Commun. Math. Phys.,147 (1): 25–56, 1992.

    Article  ADS  MATH  Google Scholar 

  9. A. Gerasimov, Yu. Makeenko, A. Marshakov, A.Mironov, A. Morozov, and A. Orlov. Matrix models as integrable systems: from universality to geometrodynamical principle of string theory. Mod. Phys. Lett., A6 (33): 3079–3090, 1991.

    MathSciNet  ADS  Google Scholar 

  10. A. Marshakov, A. Mironov, and A. Morozov. Generalized matrix models as conformal field theories. Discrete case. Phys. Lett.,265B (1–2): 99–107, 1991; A. Mironov and S. Pakuliak. Double-scaling limit in the matrix models of a new type. Technical Report FIAN/TD/0592, P. N. Lebedev Physical Institute, 1992; A. Mironov and S. Pakuliak. On the continuum limit of conformal matrix models. Int. J. Mod. Phys., A8: 3107–3137, 1993; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak. Conformal matrix models as an alternative to conventional multi-matrix models. Nucl. Phys., B404 (3): 717–750, 1993.

    Google Scholar 

  11. E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber. Planar diagrams. Commun. Math. Phys., 59 (1): 35–51, 1978.

    Article  ADS  MATH  Google Scholar 

  12. I. Frenkel and V. Kac. Basic representations of affine Lie algebras and dual resonance models. Invent. Math.,62 (1): 23–66, 1980/81; G. Segal. Unitary representations of some infinite-dimensional groups. Commun. Math. Phys., 80 (3): 301–342, 1981.

    Google Scholar 

  13. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. Shatashvili. Wess-Zumino-Witten model as a theory of free fields. Int. J. Mod. Phys., A5 (13): 2495–2589, 1990.

    MathSciNet  ADS  Google Scholar 

  14. M. Bershadsky and H. Ooguri. Hidden SL(n) symmetry in conformal field theories. Commun. Math. Phys.,126 (1): 49–83, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Bershadsky. Conformal field theories via Hamiltonian reduction. Commun. Math. Phys.,139 (1): 71–82, 1991.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. F. A. Bais, T. Tjin, and P. van Driel. Covariantly coupled chiral algebras. Nucl. Phys., B357 (2–3): 632–654, 1991.

    Article  ADS  Google Scholar 

  17. L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui, and A. Wipf. On the general structure of Hamiltonian reductions of WZW theory. Technical Report UdeM-LPN-TH-71/91, Lab. de physique nucléaire, Univ. de Montréal, 1991.

    Google Scholar 

  18. A. Zamolodchikov. Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz.,63 (3): 347–359, 1985. Russian; V. Fateev and S. Lykyanov. The models of two-dimensional conformal quantum theory with Z n symmetry. Int. J. Mod. Phys.,A3 (2): 507–520, 1988.

    Google Scholar 

  19. M. Adler, A. Morozov, T. Shiota, and P. van Moerbeke. New matrix model solutions to the Kac-Schwarz problem. In Theory of Elementary Particles, (Buckow, 1995), volume 49 of Nucl. Phys. B Proc. Suppl., 1996. pages 201–212.

    MATH  Google Scholar 

  20. V. Kazakov and A. Migdal. Induced gauge theory at large N. Nucl. Phys., B397 (1–2): 214–238, 1993; S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov. Generalized Kazakov-MigdalKontsevich model: Group theory aspects. Int. J. Mod. Phys.,A10 (14): 2015–2051, 1995.

    Google Scholar 

  21. A. Migdal. Exact solution of induced lattice gauge theory at large-N. Mod. Phys. Lett., A8 (4): 359–371, 1993.

    MathSciNet  ADS  Google Scholar 

  22. C. Itzykson and J.-B. Zuber. The planar approximation II. J. Math. Phys., 21 (3): 411–421, 1980.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Harish-Chandra. Differential operators on a semisimple Lie algebra. Amer. J. Math., 79: 87–120, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Semenov-Tyan-Shanskii. Harmonic analysis on Riemann symmetric spaces of negative curvature and scattering theory. Izv. Akad. Nauk USSR,40: 562–591, 1976. Russian.

    Google Scholar 

  25. A. Alekseev, L. Faddeev, and S. Shatashvili. Quantization of symplectic orbits of compact lie groups by means of the functional integral. J. Geom. Phys., 5 (3): 391–406, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. Alekseev and S. Shatshvili. Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity. Nucl. Phys., B323 (3): 719–733, 1989.

    Article  ADS  Google Scholar 

  27. J. Duistermaat and G. Heckman. On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math., 69 (2): 259–268, 1982.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Blau, E. Keski-Vakkuri, and A. Niemi. Path integrals and geometry of trajectories. Phys. Lett.,246B (1–2): 92–98, 1990; E. KeskiVakkuri, A. Niemi, G. Semenoff, and O. Tirkkonen. Topological quantum theories and integrable models. Phys. Rev., D44 (12): 3899–3905, 1991; A. Hietamäki, A. Morozov, A. Niemi, and K. Palo. Geometry of n = 1/2 supersymmerty and the Atiyah-Singer index theorem. Phys. Lett., 263B (3–4): 417–424, 1991; A. Morozov, Niemi, and K. Palo. Supersymmetry and loop space geometry. Phys. Lett., 271B (3–4): 365–371, 1991; A. Morozov, A. Niemi, and K. Palo. Supersymplectic geometry of supersymmetric quantum field theories. Nucl. Phys., B377 (1–2): 295–338, 1992.

    Google Scholar 

  29. E. Witten. Two-dimensional gauge theories revisited. J. Geom. Phys., 9 (4): 303–368, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Niemi and O. Tirkkonen. On exact evaluation of path integrals. Ann. Phys., 235 (2): 318–349, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. I. Kogan, A. Morozov, G. Semenoff, and N. Weiss. Area law and continuum limit in “induced QCD.” Nucl. Phys., B395 (3): 547–580, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Morozov. Pair correlation in the Itzykson-Zuber integral. Mod. Phys. Lett., A7 (37): 3503–3507, 1992.

    ADS  Google Scholar 

  33. S. Shatashvili. Correlation functions in the Itzykson-Zuber model. Commun. Math. Phys., 154 (2): 421–432, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. A. Matytsin. On the large-N limit of the Itzykson-Zuber integral. Nucl. Phys., B411 (2–3): 805–820, 1994.

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Mironov, A. Morozov, and G. Semenoff. Unitary matrix integral in the framework of generalized Kontsevich model. I. Brézin-GrossWitten model. Technical Report ITEP-M6/93, ITEP, Moscow, 1993.

    Google Scholar 

  36. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov. Landau-Ginzburg topological theories in the framework of GKM and equivalent hierarchies. Mod. Phys. Lett., A8 (11): 1047–1061, 1993.

    MathSciNet  ADS  Google Scholar 

  37. V. Kac and A. Schwarz. Geometric interpretation of the partition function of 2D gravity. Phys. Lett.,B257 (3–4): 329–334, 1991.

    MathSciNet  ADS  Google Scholar 

  38. A. Marshakov and S. Kharchev. Topological versus nontopological theories and p-q duality in c ≤ 1 2d gravity models. In Proceedings of International Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions, (Rome, 1992), 1992. pages 331–346.

    Google Scholar 

  39. D. Gross and M. Newman. Unitary and Hermitian matrices in an external field. Phys. Lett., 266B (3–4): 291–297, 1991.

    MathSciNet  ADS  Google Scholar 

  40. A. Marshakov, A. Mironov, and A. Morozov. From Virasoro constraints in Kontsevich’s model to w-constraints in two-matrix models. Mod. Phys. Lett., A7 (15): 1345–1359, 1992.

    MathSciNet  ADS  Google Scholar 

  41. L. Chekhov and Yu. Makeenko. A hint on the external field problem for matrix models. Phys. Lett., 278B (3): 271–278, 1992.

    MathSciNet  ADS  Google Scholar 

  42. S. Kharchev, A.Marshakov, A.Mironov, and A. Morozov. Generalized Kontsevich model versus Toda hierarchy and discrete matrix models. Nucl. Phys.,B397 (1–2): 339–378, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Witten. On the Kontsevich model and other models of two-dimensional gravity. In Proc. of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, (New York, 1991), 1992. World Scientific, River Edge, NJ, pages 176–216; A. Marshakov, A. Mironov, and A. Morozov. On the equivalence of topological and quantum 2D gravity. Phys. Lett., 274B (3–4): 280–288, 1992.

    Google Scholar 

  44. M. Fukuma, H. Kawai, and R. Nakayama. Continuum Schwinger-Dyson equations and universal structures in two quantum gravity. Int. J. Mod. Phys.,A6 (8): 1385–1406, 1991; R. Dijkgraaf, E. Ver-linde, and H. Verlinde. Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nucl. Phys., B348 (3): 435–456, 1991.

    Google Scholar 

  45. A. Mikhailov Ward identities and w constraints in the generalized Kontsevich model. Int. J. Mod. Phys.,A9 (6): 873–889, 1994.

    ADS  Google Scholar 

  46. M. Sato, T. Miwa, and M. Jimbo. Holonomic qantum fields. I. Publ. RIMS, Kyoto Univ., 14 (1): 223–267, 1978; M. Sato, T. Miwa, and M. Jimbo. Holonomic quantum fields. II. the Remann-Hilbert problem. Publ. RIMS, Kyoto Univ., 15 (1): 201–278, 1979; M. Sato, T. Miwa, and M. Jimbo. Holonomic quantum fields. III. Publ. RIMS, Kyoto Univ., 15 (2): 577–629, 1979; M. Sato, T. Miwa, and M. Jimbo. Holonomic quantum fields. IV. Publ. RIMS,Kyoto Univ., 15 (3): 871972, 1979; M. Sato, T. Miwa, and M. Jimbo. Holonomic quantum fields. V. Publ. RIMS,Kyoto Univ., 16 (2): 531–584, 1980.

    Google Scholar 

  47. A. Morozov, M. Shifman, and A. Turbiner. Continuous Sugawara-like realization of c = 1 conformal models. Int. J. Mod. Phys., A5 (15): 2953–2991, 1990.

    MathSciNet  ADS  Google Scholar 

  48. M. Sato. Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds. RIMS Kokyuroku,439: 30–40, 1981; M. Sato and Y. Sato. Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. In Nonlinear Partial Differential Equations in Applied Science,(Tokyo, 1982), volume 81 of North-Holland Math. Stud., 1983. North-Holland, Amsterdam, pages 259–271; G. Segal and G. Wilson. Loop groups and equation of KdV type. Publ. LH.E.S., 61: 5–65, 1985.

    Google Scholar 

  49. V. Kac. Infinite-Dimensional Lie Algebras, 2nd edition. Cambridge Univ. Press, Cambridge, 1985.

    MATH  Google Scholar 

  50. A. Orlov and E. Shulman. Additional symmetries for integrable equations and conformal representation. Lett. Math. Phys., 12 (3): 171–179, 1986; P. Grinevich and A. Orlov. Virasoro action on Riemann surfaces, Grassmannians, det \({\bar \partial _J}\) and Segal-Wilson τ-function.In Problems of Modern Quantum Field Theory, (Alushta, 1989), Res. Rep. Phys., 1989. Springer-Verlag, Berlin.

    Google Scholar 

  51. S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, and A. Zabrodin. Matrix models among integrable theories: forced hierarchies and operator formalism. Nucl. Phys.,B366 (3): 569–601, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  52. K. Ueno and K. Takasaki. Toda lattice theory. In Group Representations and Systems of Differential Equations,(Tokyo, 1982), volume 4 of Adv. Studies in Pure Math., 1984. North-Holland, Amsterdam, pages 1–95.

    Google Scholar 

  53. M. Bowick, A. Morozov, and D. Shevitz. Reduced unitary matrix models and the hierarchy of τ-functions. Nucl. Phys., B354 (2–3): 496–530, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov. Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys., B357 (2–3): 565–618, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  55. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov. Generalized Hirota equations and representation theory. I. The case of SL(2) and SLq(2). Int. J. Mod. Phys., A10 (18): 2589–2614, 1995.

    MathSciNet  ADS  Google Scholar 

  56. S. Kharchev, A. Mironov, and A. Morozov. Nonstandard KP evolution and quantum τ-function. Teoret. Mat. Fiz., 104: 129–143, 1995.

    MathSciNet  Google Scholar 

  57. Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro. An elementary introduction to Sato theory. Recent developments in soliton theory. Prog. Theor. Phys. Suppl, 94: 210–241, 1988.

    Article  MathSciNet  ADS  Google Scholar 

  58. K. Kajiwara and J. Satsuma. q-difference version of the two-dimensional Toda lattice equation. J. Phys. Soc. Japan,60 (12): 3986–3989, 1991; K. Kajiwara, Y. Ohta, and J. Satsuma. q-discrete Toda molecule equation. Phys. Lett. A, 180 (3): 249–256, 1993.

    Google Scholar 

  59. A. Mironov, A. Morozov, and L. Vinet. On a c-number quantum τ-function. Theor. Math. Phys., 100 (1): 890–889, 1994.

    Article  MathSciNet  Google Scholar 

  60. R. Floreanini and L. Vinet. On the quantum group and quantum algebra approach to q-special functions. Lett. Math. Phys., 27 (3): 179–190, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev. Quantization of Lie groups and Lie algebras. Algebra i Analiz, 1 (1): 178–206, 1989. Russian.

    MathSciNet  Google Scholar 

  62. A. Morozov and L. Vinet. Free-field representation of group element for simple quantum groups. Technical Report CRM-2202, CRM, Montréal, 1994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morozov, A. (1999). Matrix Models as Integrable Systems. In: Semenoff, G., Vinet, L. (eds) Particles and Fields. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1410-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1410-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7133-8

  • Online ISBN: 978-1-4612-1410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics