Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 139))

Abstract

A tree is a large, long-lived, perennial, compartmented, woody, shedding, walling plant. This definition is based on new tree biology concepts (Shigo, 1986a,b, 1991) and explains much about how mature trees function through their unique structure. When the tree begins its life, it is mostly leaf in mass (Fig. 7.1a). As a tree grows in stature, it becomes mostly stem in mass and the foliage represents only a few percent of the total mass. Roots remain relatively constant at about one-fifth the total mass as a tree grows from a small sapling to a mature standard in the forest canopy. Branches represent only a small fraction of total mass, which decreases over time, as older branches are shed. Also shed are leaves, roots, and outer bark. However, aging wood cannot be shed, but dies internally as sapwood is transformed into a core of protection wood, often called “heartwood” (Fig. 7.1b,c; Table 7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, NR (1994) Chilling stress and photosynthesis. In: Foyer CH, Mullineaux PM (eds) Causes of Photo-oxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, FL, pp 127–154.

    Google Scholar 

  • Bartholomay GA, Eckert R, Smith KT (1997) Reductions in tree-ring widths of white pine following ozone exposure at Acadia National Park, Maine, U.S.A. Can J For Res 27: 361–368.

    Google Scholar 

  • Bauch J, Rademacher P, Berneike W, Kroth J, Michaelis W (1985a) Breite und Elementgehalt der Jahrringe in Fichten aus Waldschadensgebieten. In: Waldschaden-Einflussfaktoren und ihre Bewertung. VCI Berichte 560, Dusseldorf, Germany, pp 943–959.

    Google Scholar 

  • Bauch J, Schroeder W (1982) Zellularer Nachweis von Elementen in den Feinwurzeln gesunder und erkrankter Tanne (Abies alba Mill.). Forstwiss Ctrblatt 101:285–294.

    Google Scholar 

  • Bauch J, Stienen H, Ulrich B, Matzner E (1985b) Einfluss einer Kalkung bzw. Dungung auf den Elementgehalt in Feinwurzeln und das Dickenwachstum von Fichten aus Waldschadensgebieten. Allgem Forst Z 43:1148–1150.

    Google Scholar 

  • Bermadinger-Stabentheiner E (1996) Influence of altitude, sampling year, and needle age class on stress-physiological reactions of spruce needles investigated on an alpine altitude profile. J Plant Physiol 148:339–344.

    CAS  Google Scholar 

  • Bills GF, Holtzman GI, Miller OK Jr. (1986) Comparison of ectomycorrhizal-basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can J Bot 64:760–768.

    Google Scholar 

  • Bloomfield J, Vogt K, Wargo PM (1996) Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The Hidden Half. Marcel Dekker, New York, pp 363–381.

    Google Scholar 

  • Bruck RI (1989) Survey of diseases and insects of Fraser fir and red spruce in the southern Appalachian Mountains. Eur J For Pathol 19:389–398.

    Google Scholar 

  • Bruck RI (1984) Decline of montane boreal ecosystems in central Europe and the southern Appalachian Mountains. TAPPI Proc 159–163.

    Google Scholar 

  • Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28:3916–3922.

    PubMed  CAS  Google Scholar 

  • Carey AC, Miller EA, Geballe GT, Wargo PM, Smith WH, Siccama TG (1984) Armillaria mellea and decline of red spruce. Plant Dis 68(9):794–795.

    Google Scholar 

  • Castello JD, Wargo PM, Jacobi V, Bachand GD, Tobi DR, Rogers MAM (1995) Tomato mosaic virus infection of red spruce on Whiteface Mountain, New York: prevalence and potential impact. Can J For Res 25:1340–1345.

    Google Scholar 

  • Charles DF (1984) Recent pH history of Big Moose Lake (Adirondack Mountains, New York, USA) inferred from sediment diatom assemblages. Verh Int Verein Limnol 22:559–566.

    Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic Properties of Forest Ecosystems. International Biological Programme 23. Cambridge University Press, Cambridge, United Kingdom, pp 341–409.

    Google Scholar 

  • Cook ER (1990) Bootstrap confidence intervals for red spruce ring-width chronologies and an assessment of age-related bias in recent growth trends. Can J For Res 20:1326–1331.

    Google Scholar 

  • Cook ER (1985) A Time Series Approach to Tree-ring Standardization. PhD dissertation, University of Arizona, Tucson, AZ.

    Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DS, Funkhouser G (1995) The segment length curse in long chronology development for paleoclimatic studies. Holocene 5:229–237.

    Google Scholar 

  • Cook ER, Zedaker SM (1992) The dendroecology of red spruce decline. In: Eagar C, Adams MB (eds) Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 92–231.

    Google Scholar 

  • Cooke MA, Widden P, O’Halloran I (1992) Morphology, incidence and fertilization effects on the vesicular-arbuscular mycorrhizae of Acer saccharum in a Quebec hardwood forest. Mycologia 84(3):422–430.

    Google Scholar 

  • Cronan CS (1994) Aluminum biogeochemistry in the Albios forest ecosystems: The role of acidic deposition in aluminum cycling. In: Godbold DL, Heutterman A (eds) Effects of acid rain on forest processes. Wiley-Liss, New York, pp 51–81.

    Google Scholar 

  • Cronan CS (1991) Differential adsorption of Al, Ca, and Mg by roots of red spruce (Picea rubens Sarg.). Tree Physiol 8:227–237.

    PubMed  CAS  Google Scholar 

  • Cronan CS, April R, Bartlett R, Bloom P, Driscoll C, Gherini S, Henderson G, Joslin J, Kelly JM, Newton R, Parnell R, Patterson H, Raynal D, Schaedle M, Schofield C, Sucoff E, Tepper H, Thornton F (1989) Aluminum toxicity in forests exposed to acidic deposition: the ALBIOS results. Water Air Soil Pollut 48:181–192.

    CAS  Google Scholar 

  • Cronan CS, Goldstein RA (1989) ALBIOS: a comparison of aluminum biogeochemistry in forested watersheds exposed to acidic deposition. In: Adrian DC, Hava M (eds) Acidic Precipitation. Vol. 1. Case Studies. Advances in Environmental Science. Springer-Verlag, New York, pp 113–135.

    Google Scholar 

  • Cronan CS, Grigal DF (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226.

    CAS  Google Scholar 

  • Dahlgren R, Vogt KA, Ugolini FC (1991) The influence of soil chemistry on fine root aluminum concentrations and root dynamics in a subalpine spodosol. Plant Soil 133:117–129.

    CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321.

    PubMed  CAS  Google Scholar 

  • Driscoll CT, van Breemen N, Mulder J (1984) Aluminum chemistry in a forested spodosol. Soil Sci Soc Am J 49:437–444.

    Google Scholar 

  • Entry JA, Cromack K Jr., Stafford SG, Castellano MA (1987) The effect of pH and aluminum concentration on ectomycorrhizal formation in Abies balsamea. Can J For Res 17:865–871.

    CAS  Google Scholar 

  • Fernandez IJ (1992) Characterization of eastern U.S. spruce-fir soils. In: Eager C, Adams MB (eds) Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 40–63.

    Google Scholar 

  • Flores HE (1991) Changes in polyamine metabolism in response to abiotic stress. In: Slocum RD, Flores HE (eds) Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton, FL, pp 213–228.

    Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K-J, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057.

    PubMed  CAS  Google Scholar 

  • Fritts HC (1976) Tree Rings and Climate. Academic Press, New York.

    Google Scholar 

  • Gawel JE, Ahner BA, Friedland A, Morel FMM (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature 381:64–65.

    CAS  Google Scholar 

  • Glenn MG, Wagner WS, Webb SL (1991) Mycorrhizal status of mature red spruce (Picea rubens) in mesic and wetland sites of northwestern New Jersey. Can J For Res 21:741–749.

    Google Scholar 

  • Godbold DL, Fritz E, Huttermann A (1988) Aluminum toxicity and forest decline. Proc Natl Acad Sci USA 85:3888–3892.

    PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443.

    PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1988) Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experientia 44:539–540.

    CAS  Google Scholar 

  • Grissino-Mayer HD, Butler DR (1993) Effects of climate on growth of shortleaf pine in northern Georgia: a dendroclimatic study. South Geogr 33:65–81.

    Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951.

    PubMed  CAS  Google Scholar 

  • Harney SK (1994) Dematiaceous Endophytes from Plant Roots: Molecular Characterization and Interactions. PhD thesis, State University of New York, Syracuse, NY.

    Google Scholar 

  • Harney SK, Wentworth TS, Wargo PM (1995) Phialocephala fortinii, a potential fine root pathogen, isolated from red spruce. Phytopathology 85:1141.

    Google Scholar 

  • Hartig R (1897) Ueber den Einfluss des Hütten-und Steinkohlenrauches auf den Zuwach der Nadelholzbäume. Forst Naturwiss Z 6:49–60.

    Google Scholar 

  • Haug A (1984) Molecular aspects of aluminum toxicity. Crit Rev Plant Sci 1:345–373.

    CAS  Google Scholar 

  • Hendry GAF, Broklebank KJ (1985) Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol 101:199–206.

    CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol 67:283.

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Holmes RL, Adams RK, Fritts HC (1986) Tree-ring Chronologies of Western North America: California, Eastern Oregon, and Northern Great Basin, with Procedures Used in the Chronology Development Work Including User’s Manuals for Computer Programs COFECHA and ARSTAN. Chronology Series VI. Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ.

    Google Scholar 

  • Hopkins HT Jr. (1939) The Root Distribution of Forest Trees in the Central Adirondack Region. PhD thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Houman F, Godbold DL, Majcherczyk A, Shasheng W, Huttermann A (1991) Polyamines in leaves and roots of Populus maximowiczii grown in different levels of potassium and phosphorus. Can J For Res 21:1748–1751.

    Google Scholar 

  • Hudak J, Singh P (1970) Incidence of Armillaria root rot in balsam fir infested by balsam woolly aphid. Can Plant Dis Surv 50:99–101.

    Google Scholar 

  • Jacobi V, Castello J (1992) Infection of red spruce, black spruce, and balsam fir seedlings with tomato mosaic virus. Can J For Res 22:919–924.

    Google Scholar 

  • Jacobi V, Castello JD (1991) Isolation of tomato mosaic virus from waters draining forest stands in New York State. Phytopathology 81:1112–1117.

    Google Scholar 

  • Jacobi V, Castello JD, Flachmann M (1992) Isolation of tomato mosaic virus from red spruce. Plant Dis 76:518–522.

    Google Scholar 

  • Johnson AH, Anderson SB (1994) Acid rain and soils of the Adirondacks. I. Changes in pH and available calcium, 1930-1984. Can J For Res 24:39–45.

    CAS  Google Scholar 

  • Johnson AH, Cook ER, Siccama TG (1988) Climate and red spruce growth and decline in the northern Appalachians. Proc Natl Acad Sci USA 85:5369–5373.

    PubMed  CAS  Google Scholar 

  • Johnson AH, Cook ER, Siccama TG, Battles JJ, McLaughlin SB, LeBlanc DC, Wargo PM (1995) Comment: Synchronic large-scale disturbances and red spruce growth decline. Can J For Res 25:851–858.

    Google Scholar 

  • Johnson AH, Schwartzman TN, Battles JJ, Miller R, Miller EK, Friedland AJ, Vann DR (1994b) Acid rain and soils of the Adirondacks. II. Evaluation of calcium and aluminum as causes of red spruce decline at Whiteface Mountain, New York. Can J For Res 24:654–662.

    CAS  Google Scholar 

  • Johnson AH, Friedland AJ, Miller EK, Siccama TG (1994a) Acid rain and soils of the Adirondacks. III. Rates of soil acidification in a montane spruce-fir forest at Whiteface Mountain, New York. Can J For Res 24:663–669.

    CAS  Google Scholar 

  • Johnson AH, Siccama TG, Friedland AJ (1982a) Spatial and temporal patterns of lead accumulation in the forest floor in the northeastern United States. J Environ Qual 11:577–580.

    CAS  Google Scholar 

  • Johnson DW, Cole DW, Bledsoe CS, Cromack K, Edmonds RL, Gessel SP, Grier CC, Richards BN, Vogt KA (1982b) In: Edmonds RL (ed) Nutrient Cycling in Forests of the Pacific Northwest. Analysis of Coniferous Forest Ecosystems in the Western United States. Hutchinson Ross, Stroudsburg, PA.

    Google Scholar 

  • Johnson DW, Fernandez IJ (1992) Soil-mediated effects of atmospheric deposition on eastern spruce-fir forests. In: Eager C, Adams MB (eds) Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 235–270.

    Google Scholar 

  • Joslin JD, Kelly JM, Van Miegroet H (1992) Soil chemistry and nutrition of North American spruce-fir stands: evidence of recent change. J Environ Qual 21: 12–30.

    CAS  Google Scholar 

  • Joslin JD, Wolfe MH (1992) Red spruce soil solution chemistry and root distribution across a cloud water deposition gradient. Can J For Res 22:893–904.

    CAS  Google Scholar 

  • Kalisz PJ, Zimmerman RW, Muller RN (1987) Root density, abundance, and distribution in the mixed mesophytic forest of eastern Kentucky. Soil Sci Soc Am J 51:220–225.

    Google Scholar 

  • Kelly JM, Mays PA (1989) Root zone physical and chemical characteristics in southeastern spruce-fir stands. Soil Sci Soc Am J 53:1248–1255.

    Google Scholar 

  • Kendrick WB (1961) The Leptographium complex Phialocephala gen. nov. Can J Bot 39:1079–1085.

    Google Scholar 

  • Kim JW, Kim JH (1994) Comparison of adjustments to drought stress among seedlings of several oak species. J Plant Biol 37:343–347.

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260.

    CAS  Google Scholar 

  • Kottke J (1987) Zusammenfassung und Wertung zum Themenbereich My-korrhiza/rhizosphare. Tagungsbericht Statusseminar Kfa Julich 30.3.-3.4: 342–345.

    Google Scholar 

  • Kowalski S (1973) Mycorrhiza forming properties of various strains of the fungus Mycelium radicis atrovirens Melin. Bull Acad Polon Sci, Ser Sci Biol 21: 767–770.

    Google Scholar 

  • Krause C (1997) The use of dendrochronological material from buildings to get information about past spruce budworm outbreaks. Can J For Res 27:69–75.

    Google Scholar 

  • Lange BM, Lapierre C, Sandermann H Jr. (1995) Elicitor-induced spruce stress lignin: Structural similarities to early developmental lignins. Plant Physiol 108:1277–1287.

    PubMed  CAS  Google Scholar 

  • Lawrence GB, David MB, Shortle WC (1995) A new mechanism for calcium loss in forest-floor soils. Nature 378:162–165.

    CAS  Google Scholar 

  • Lawrence GB, Fernandez IJ (1991) Biogeochemical interactions between acidic deposition and a low-elevation spruce-fir stand in Howland, Maine. Can J For Res 21:867–875.

    CAS  Google Scholar 

  • Leblanc DC, Raynal DJ, White EH (1987) Acidic deposition and tree growth. II. Assessing the role of climate in recent growth declines. J Environ Qual 16:334–340.

    Google Scholar 

  • Livingston WH, Blaschke H (1984) Deterioration of mycorrhizal short roots and occurrence of Mycelium radicis atrovirens on declining Norway spruce in Bavaria. Eur J For Pathol 14:340–348.

    Google Scholar 

  • Loehle C (1988) Tree life history strategies: the role of defenses. Can J For Res 18:209–222.

    Google Scholar 

  • Manion PD (1981) Fungi as agents of tree diseases: root rot. In: Manion PD (ed) Tree Disease Concepts. Prentice-Hall, Englewood Cliffs, NJ, pp 295–309.

    Google Scholar 

  • Marsh NR, Adams MA (1995) Decline of Euclyptus teriticornis near Bairsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust J Bot 43:39–49.

    Google Scholar 

  • Matthek C, Gerhardt H, Breloer H (1992) VTA: visual tree defect assessment based on computer simulation of adaptive growth. In: Little C (ed) Experimental Mechanics. Elsevier, London, United Kingdom, pp 109–120.

    Google Scholar 

  • Mayewski PC (1986) Sulfate and nitrate concentrations from a south Greenland ice core. Science 232:975–977.

    PubMed  CAS  Google Scholar 

  • McLaughlin SB, Dowing DJ, Biasing TC, Cook ER, Adams HS (1987) An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the eastern United States. Oecologia 72:487–501.

    Google Scholar 

  • McQuattie CJ, Shier GA (1992) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: anatomy of mycorrhizae. Can J For Res 22:1901–1916.

    CAS  Google Scholar 

  • Melin E (1922) On the mycorrhizas of Pinus silvestris L. and Picea abies Karst. A preliminary note. J Ecol 9:254–257.

    Google Scholar 

  • Meyer J, Schneider BU, Werk K, Oren R, Schulze ED (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. V. Root tip and ectomycorrhiza development and their relations to above ground and soil nutrients. Oecologia 77:7–13.

    Google Scholar 

  • Miller-Weeks M, Smoronk D (1993) Aerial Assessment of Red Spruce and Balsam Fir Condition. NA-TP-16-93. United States Department of Agriculture (USDA) Forest Service, Northeastern Area, Radnor, PA.

    Google Scholar 

  • Minocha R, Minocha SC, Komamine A, Shortle WC (1991) Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures. Plant Cell Rep 10:126–130.

    CAS  Google Scholar 

  • Minocha R, Minocha SC, Long SL, Shortle WC (1992) Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus. Physiol Plant 85:417–424.

    CAS  Google Scholar 

  • Minocha R, Shortle WC (1993) Fast, safe, and reliable methods for extraction of major inorganic cations from small quantities of woody plant tissues. Can J For Res 23:1645–1654.

    CAS  Google Scholar 

  • Minocha R, Shortle WC, Coughlin DJ, Minocha SC (1996a) Effects of Al on growth, polyamine metabolism, and inorganic ions in suspension cultures of red spruce (Picea rubens). Can J For Res 26:550–559.

    CAS  Google Scholar 

  • Minocha R, Shortle WC, Lawrence GB, David MB, Minocha SC (1996b) Putrescine: a marker of stress in red spruce trees. In: Horn J, Birdsey R, O’Brian K (eds) Proceedings, 1995 Meeting of the Northern Global Change Program, 14-16 March 1995, Pittsburgh, PA. Gen Tech Rep NE-214. United States Department of Agriculture (USDA) Forest Service, Northeastern Forest Experiment Station, Radnor, PA, pp 119–130.

    Google Scholar 

  • Minocha R, Shortle WC, Lawrence GB, David MB, Minocha SC (1997) Relationships among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States. Plant Soil 191:109–122.

    CAS  Google Scholar 

  • Minocha SC, Minocha R, Robie CA (1990) High-performance liquid Chromatographic method for the determination of dansyl-polyamines. J Chromatogr 511:177–183.

    CAS  Google Scholar 

  • Momoshima N, Bondietti EA (1990) Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce. Can J For Res 20:1840–1849.

    Google Scholar 

  • Moutoglis P, Widden P (1996) Vesicular-arbuscular mycorrhizal spore populations in sugar maple (Acer saccharum Marsh.) forests. Mycorrhiza 6:91–97.

    Google Scholar 

  • National Acid Precipitation Assessment Program [NAPAP] (1993) 1992 Report to Congress. NAPAP, Washington, DC.

    Google Scholar 

  • Nageswara R, Madamanchi R, Hausladen A, Alscher R, Amundson RG, Fellows S (1991) Seasonal changes in antioxidants in red spruce (Picea rubens Sarg.) from three field sites in the Northeastern United States. New Phytol 118:331–338.

    Google Scholar 

  • Ouimet R, Camire C, Furlan V (1995) Endomycorrhizal status of sugar maple in relation to tree decline and foliar, fine-roots, and soil chemistry in the Beauce region, Quebec. Can J Bot 73:1168–1175.

    Google Scholar 

  • Pavlicek KA, Yopp JH (1982) Betaine as a compatible solute in the complete relief of salt inhibition of glucose-6-phosphate dehydrogenase from a halophilic blue-green alga. Plant Physiol 69:58.

    Google Scholar 

  • Price AH, Hendry GAF (1991) Iron catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14:477–484.

    CAS  Google Scholar 

  • Reams GA, Nicholas NS, Zedaker SM (1993) Two hundred year variation of southern red spruce radial growth as estimated by spectral analysis. Can J For Res 23:291–301.

    Google Scholar 

  • Rehfuess KE (1989) Acidic deposition—extent and impact on forest soils, nutrition, growth and disease phenomena in central Europe: A review. Water Air Soil Pollut 48:1–20.

    CAS  Google Scholar 

  • Reuss JO (1983) Implications of the calcium-aluminum exchange system for the effect of acid precipitation on soils. J Environ Qual 12:591–595.

    CAS  Google Scholar 

  • Richard C, Fortin JA (1973) The identification of Mycelium radicis atrovirens (Phialocephala dimorphospora). Can J Bot 51:2247–2248.

    Google Scholar 

  • Richter DFE, Kirst GO (1987) D-Mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation. Planta 170:528–534.

    CAS  Google Scholar 

  • Robarge WP, Johnson DW (1992) The effects of acidic deposition on forested soils. Advan Agron 47:1–83.

    CAS  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents: proline, betaine, and trehalose on membrane phospholipids. Arch Biochem Biophys 245:134–143.

    PubMed  CAS  Google Scholar 

  • Rustad LE, Cronan CS (1995) Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, USA. Biogeochemistry 29:107–129.

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995). Characterization of Al stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110.

    CAS  Google Scholar 

  • Schier GA, McQuattie CJ, Jensen KF (1990) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: growth and nutrition relations. Can J For Res 20:1714–1719.

    CAS  Google Scholar 

  • Schlegel H, Huttermann A (1990) Identification of ion stress in roots of forest trees. In: Persson H (ed) Above-and Below-ground Interactions in Forest Trees in Acidified Soils. Air Pollut Res Rep 32. Environmental Research Programme of the Commission of the European Communities, Brussels, Belgium. pp 110–118.

    Google Scholar 

  • Schneider BU, Meyer J, Schulze E-D, Zech W (1989) Root and mycorrhizal development in healthy and declining Norway spruce stands. In: Schulze E-D, Lange OL, Oren R (eds) Forest Decline and Air Pollution: A Study of Spruce (Picea abies) on Acid Soils. Ecological Studies, Vol. 77, Springer-Verlag, Berlin, Germany, pp 370–391.

    Google Scholar 

  • Schroeder WH, Bauch J, Endeward R (1988) Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: influence of pH and aluminum. Trees 2:96–103.

    CAS  Google Scholar 

  • Schwanz P, Picon C, Vivin P, Dreyer E, Guehl J-M, Polie A (1996) Responses of antioxidative systems to drought stress in pedunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol 110:393–402.

    PubMed  CAS  Google Scholar 

  • Shaw CG III, Kile GA (eds) Armillaria Root Disease. Agric Hndbk 691. United States Department of Agriculture (USDA) Forest Service, Washington, DC.

    Google Scholar 

  • Shainkin-Kestenbaum R, Adler AJ, Berlyne GM, Caruso C (1989) Effect of aluminum on Superoxide dismutase. Clin Sci 77:463–466.

    PubMed  CAS  Google Scholar 

  • Shigo AL (1986a) A New Tree Biology. Shigo and Trees, Durham, NH.

    Google Scholar 

  • Shigo AL (1986b) A New Tree Biology Dictionary. Shigo and Trees, Durham, NH.

    Google Scholar 

  • Shigo AL (1991) Modern Arboriculture. Shigo and Trees, Durham, NH.

    Google Scholar 

  • Shortle WC, Bondietti EA (1992) Timing, magnitude, and impact of acidic deposition on sensitive forest sites. Water Air Soil Pollut 61:253–267.

    CAS  Google Scholar 

  • Shortle WC, Smith KT (1988) Aluminum induced calcium deficiency syndrome in declining red spruce. Science 240:1017–1018.

    PubMed  CAS  Google Scholar 

  • Shortle WC, Smith KT, Minocha R, Lawrence GB, David MB (1997) Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce. J Environ Qual 26:871–876.

    CAS  Google Scholar 

  • Sinclair WA, Lyon HH, Johnson WT (1987) Diseases caused by Phytophthora species. In: Diseases of Trees and Shrubs. Cornell University Press, Ithaca, NY, pp 284–291.

    Google Scholar 

  • Slocum RD, Flores HE (1991) (eds) Biochemistry and physiology of polyamines. CRC Press, Boca Raton, FL, p 228.

    Google Scholar 

  • Slutzky E (1937) The summation of random causes as the source of cyclic processes. Econometrica 5:105–146.

    Google Scholar 

  • Smith KT (1997) Phenolics and compartmentalization in the sapwood of broad-leaved trees. In: Dashek WV (ed) Methods in Plant Biochemistry and Molecular Biology. CRC Press, Boca Raton, FL, pp 189–198.

    Google Scholar 

  • Smith KT, Cufar K, Levanic T (1999) Temporal stability and dendroclimatology in silver fir and red spruce. Phyton 39(3):43–54.

    Google Scholar 

  • Smith KT, Shortle WC (1996) Tree biology and dendrochemistry. In: Dean JS, Meko DM, Swetnam TW (eds) Tree Rings, Environment and Humanity. Radiocarbon, Tucson, Arizona, pp 629–635.

    Google Scholar 

  • Smith KT, Shortle WC, Ostrofsky WD (1995) Aluminum and calcium in fine root tips of red spruce collected from the forest floor. Can J For Res 25:1237–1242.

    CAS  Google Scholar 

  • Stienen H, Barckhausen R, Schaub H, Bauch J (1984) Mikroskopische und rontgenenergiedispersive Untersuchungen an Feinwurzeln gesunder und erkrankter Fichten (Picea abies [L.] Karst.) verschiedener Standarte. Forstwiss Ctrblatt 103:262–274.

    Google Scholar 

  • Stokes MA, Smiley TL (1996) An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson AZ. [Reprint of 1968 edition]

    Google Scholar 

  • Sucoff E, Thornton F, Joslin JD (1990) Sensitivity of tree seedlings to aluminum. I. Honeylocust. J Environ Qual 19:163–171.

    CAS  Google Scholar 

  • Ulrich B (1987) Raten der Deposition, Akkumulation und des Austrags Toxischer Luftverunreinigungen als Mass der Belastung und Belastbarkeit von Waldo-kosystemen. Tagungsbericht Statusseminar KfA Julich 30.3.-3.4:277–278.

    Google Scholar 

  • Ulrich B (1983) Soil acidity and its relations to acid deposition. In: Ulrich B, Pankrath J (eds) Effects of Accumulation of Air Pollutants in Forest Ecosystems. D Reidel, Boston, MA, pp 127–146.

    Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1979) Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldoekosystemen im Soiling in Schriften. Forstl Fak Univ Goettingen 58:1–291.

    Google Scholar 

  • Van Deusen PC (1990) Evaluating time-dependent tree ring and climate relationships. J Environ Qual 19:481–488.

    Google Scholar 

  • Van Deusen PC (1989) A model-based approach to tree ring analysis. Biometrics 45:763–779.

    Google Scholar 

  • Vernon DM, Osterm JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte: the regulation of salinity-induced genes in Mesembry-anthemum crystallinum. Plant Cell Environ 16:437–444.

    CAS  Google Scholar 

  • Vogt KA, Edmonds RI, Grier CC (1981) Seasonal changes in biomass and vertical distribution of mycorrhizal and fibrous-textured conifer fine roots in 23-and 180-year-old subalpine Abies amabilis stands. Can J For Res 11:223–229.

    Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC, Piper SR (1980) Seasonal changes in mycorrhizal and fibrous root growth in 23-and 180-year-old Pacific silver fir stands in western Washington. Can J For Res 10:523–529.

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res 15:303–377.

    Google Scholar 

  • Vogt KA, Vogt DJ, Moore EE, Fatuga BA, Redlin MR, Edmonds RL (1987) Douglas-fir overstory and understory live fine root biomass in relation to stand age and productivity. J Ecol 75:857–870.

    Google Scholar 

  • Wang CJK, Wilcox HE (1985) New species of ectendomycorrhizal and pseudo-mycorrhizal fungi: Phialophora finlandia, Chloridium paucisporum, and Phialocephala fortinii. Mycologia 77(6):951–958;

    Google Scholar 

  • Wargo PM (1981) Defolation, dieback and mortality. In: Doane CC, McManus ML (eds) The Gypsy Moth: Research toward Integrated Pest Management. Tech Bull 1584. United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service, Washington, DC, pp 240–248.

    Google Scholar 

  • Wargo PM (1977) Armillariella mellea and Agrilus bilineatus and mortality of defoliated oak trees. For Sci 23:485–492.

    Google Scholar 

  • Wargo PM, Bergdahl DR, Tobi DR, Olson CW (1993) Root Vitality and Decline of Red Spruce. Biologia Arborum. Ecomed, Munich, Germany.

    Google Scholar 

  • Wargo PM, Carey AC, Geballe GT, Smith WH (1987a) Effects of lead and trace metals on growth of three root pathogens of spruce and fir. Phytopathology 77:123.

    Google Scholar 

  • Wargo PM, Carey AC, Geballe GT, Smith WH (1987b) Occurrence of rhizomorphs of Armillaria in soils from declining red spruce stands in three forest types. Plant Dis 71:163–167.

    Google Scholar 

  • Wargo PM, Harrington TC (1991) Host stress and susceptibility. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agric Hndbk 691. United States Department of Agriculture USDA Forest Service, Washington, DC, pp 88–101.

    Google Scholar 

  • Wargo PM, Houston DR (1974) Infection of defoliated sugar maple trees by Armillaria mellea. Phytopathology 64:817–822.

    Google Scholar 

  • Weidensaul TC, Fleck AM, Hartzler DM, Capek CL (1989) Quantifying Spruce Decline and Related Forest Characteristics at Whiteface Mountain, New York. Summary Report. Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH.

    Google Scholar 

  • Worrall JJ, Harrington TC (1988) Etiology of canopy gaps in spruce-fir forests at Crawford Notch, New Hampshire. Can J For Res 18:1463–1469.

    Google Scholar 

  • Zaman K, Miszta H, Dabrowski Z (1990) The effect of aluminum on the activity of selected bone marrow enzymes in rats. Folia Haematol 117:447–452.

    CAS  Google Scholar 

  • Zhou X, Minocha R, Minocha SC (1995) Physiological responses of suspension cultures of Catharanthus roseus to aluminum: changes in polyamines and inorganic ions. J Plant Physiol 145:277–284.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shortle, W.C., Smith, K.T., Minocha, R., Minocha, S., Wargo, P.M., Vogt, K.A. (2000). Tree Health and Physiology in a Changing Environment. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds) Responses of Northern U.S. Forests to Environmental Change. Ecological Studies, vol 139. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1256-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1256-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7064-5

  • Online ISBN: 978-1-4612-1256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics