Skip to main content

Pathophysiologic and Clinical Importance of Stress-Induced Th1/Th2 T Cell Shifts

  • Chapter
Multiple Organ Failure
  • 362 Accesses

Abstract

The fact that T cells can differentiate and become polarized to produce a certain limited spectrum of cytokines and mediate only a subset of potential T cell functions during cell-cell interactions continues to be an area of intense investigation. The mechanisms by which T-helper (Th) cels mobilize various effector reactions remained unclear until 1986 when Mosmann and Coffman started a conceptual revolution in immunology by dividing murine T cell clones, or Th cells, into the now familiar two subpopulations, Th1 and Th2 based on their restricted and stereotyped profile of cytokine secretion.1 These same two subsets can be generated from ex vivo populations when cultured under appropriate conditions;2 they can also be recovered from immunized animals3 and from patients suffering from a variety of diseases.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mosmann TR, Coffman RL: Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–173.

    Article  PubMed  CAS  Google Scholar 

  2. Swain SL, Croft M, Dubey C, et al: From naive to memory T cells. Immunol Rev 1996; 150: 143–167.

    Article  PubMed  CAS  Google Scholar 

  3. Sher A, Coffman RL: Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 1992; 10: 385–409.

    Article  PubMed  CAS  Google Scholar 

  4. Romagnani S: Lymphokine production by human T cells in disease states. Annu Rev Immunol 1994; 12: 227–257.

    Article  PubMed  CAS  Google Scholar 

  5. Swain SL, Weinberg AD, English M: CD4+T cell subsets: lymphokine secretion of memory cells and of effector cells that develop from precursors in vitro. J Immunol 1990; 144: 1788–1799.

    PubMed  CAS  Google Scholar 

  6. Street NE, Schumacher JH, Fong TA, et al: Heterogeneity of mouse helper T cells: evidence from bulk cultures and limiting dilution cloning for precursors of Th1 and Th2 cells. J Immunol 1990; 144: 1629–1639.

    PubMed  CAS  Google Scholar 

  7. Romagnani S: Biology of human TH1 and TH2 cells. J Clin Immunol 1995; 15: 121–129.

    Article  PubMed  CAS  Google Scholar 

  8. De Waal Malefyt R, Abrams JS, Zurawski SM, et al: Differential regulation of IL-13 and IL-4 production by human CD8+ and CD4+ Th0, Th1 and Th2 T cell clones and EBV-transformed B cells. Int Immunol 1995; 7: 1405–1416.

    Article  PubMed  Google Scholar 

  9. Jung T, Wijdenes J, Neumann C, de Vries JE, Yssel H: Interleukin-13 is produced by activated human CD45RA+ and CD45RO+ T cells: modulation by interleukin-4 and interleukin-12. Eur J Immunol 1996; 26: 571–577.

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  11. Sad S, Mosmann TR: Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol 1994; 153: 3514–3522.

    PubMed  CAS  Google Scholar 

  12. Croft M, Carter L, Swain SL, Dutton RW: Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 1994; 180: 1715–1728.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H: Differential production of interferon-gamma and interleukin-4 in response to Th1-and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 1995; 373: 255–257.

    Article  PubMed  CAS  Google Scholar 

  14. Romagnani S: Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991; 12: 256–257.

    Article  PubMed  CAS  Google Scholar 

  15. Parronchi P, Macchia D, Piccinni MP, et al: Allergen-and bacteria antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 1991; 88: 4538–4542.

    Article  PubMed  CAS  Google Scholar 

  16. Swain SL: IL4 dictates T-cell differentiation. Res Immunol 1993; 144: 616–620.

    Article  PubMed  CAS  Google Scholar 

  17. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, A OG, Murphy KM: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  PubMed  CAS  Google Scholar 

  18. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM: Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis: evidence for expansion of distinct helper T cell subsets. J Exp Med 1989; 169: 59–72.

    Article  PubMed  CAS  Google Scholar 

  19. Shibuya K, Robinson D, Zonin F: IL-1 alpha and TNFalpha are required for IL-12-induced development of Th1 cells producing high levels of IFN gamma in BALB/c but not C57BL/6 mice. J Immunol 1998; 160: 1708–1716.

    PubMed  CAS  Google Scholar 

  20. Robinson D, Shibuya K, Mui A: IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 1997; 7: 571–581.

    Article  PubMed  CAS  Google Scholar 

  21. Seder RA, Gazzinelli R, Sher A, Paul WE: Interleukin-12 acts directly on CD4 T-cells to enhance priming for interferon-gamma production and diminishes interleukin-4 inhibition of such priming. Proc Natl Acad Sci USA 1993; 90: 10188–10192.

    Article  PubMed  CAS  Google Scholar 

  22. Seder RA, Paul WE, Davis MM, Fazekas de St. Groth B: The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 1992; 176: 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  23. Romagnani S: Induction of TH1 and TH2 responses: a key role for the ‘natural’ immune response? Immunol Today 1992; 13: 379–381.

    Article  PubMed  CAS  Google Scholar 

  24. Maggi E, Parronchi P, Manetti R, et al: Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones. J Immunol 1992; 148: 2142–2147.

    PubMed  CAS  Google Scholar 

  25. Manetti R, Parronchi P, Giudiii MG, et al: Natural killer cell stimulatory factor (interleuMn 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 1993; 177: 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  26. Manetti R, Gerosa F, Giudizi MG, et al: Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J Exp Med 1994; 179: 1273–1283.

    Article  PubMed  CAS  Google Scholar 

  27. Romagnani S, Parronchi P, De MM, et al: An update on human Th1 and Th2 cells. Int Arch Allergy Immunol 1997; 113: 153–156.

    Article  PubMed  CAS  Google Scholar 

  28. Piccinni MP, Macchia D, Parronchi P, et al: Human bone marrow non-B non-T cells produce interleukin 4 in response to crosslinkage of Fc epsilon and Fc gamma receptors. Proc Natl Acad Sci USA 1991; 88: 8656–8660.

    Article  PubMed  CAS  Google Scholar 

  29. Bradding P, Feather IH, Howarth PH, et al: Interleukin 4 is localized to and released by human mast cells. J Exp Med 1992; 176: 1381–1386.

    Article  PubMed  CAS  Google Scholar 

  30. Brunner T, Heusser CH, Dahinden CA: Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med 1993; 177: 605–611.

    Article  PubMed  CAS  Google Scholar 

  31. Moqbel R, Ying S, Barkans J, et al: Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J Immunol 1995; 155: 4939–4947.

    PubMed  CAS  Google Scholar 

  32. Yoshimoto T, Paul WE: CD4pos, NKl.lpos T cells promptly produce interleukin 4 in response to in vivo challenge with antiCD3. J Exp Med 1994; 179: 1285–1295.

    Article  PubMed  CAS  Google Scholar 

  33. Kalinski P, Hilkens CM, Wierenga EA, et al: Functional maturation of human naive T helper cells in the absence of accessory cells: generation of IL-4-produdng T helper cells does not require exogenous IL-4. J Immunol 1995; 154: 3753–3760.

    PubMed  CAS  Google Scholar 

  34. Romagnani S: The Th1/Th2 paradigm. Immunol Today 1997; 18: 263–266.

    Article  PubMed  CAS  Google Scholar 

  35. Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA: Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 1997; 185: 461–469.

    Article  PubMed  CAS  Google Scholar 

  36. Paliard X, de Waal Malefijt R, Yssel H, et al: Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol 1988; 141: 849–855.

    PubMed  CAS  Google Scholar 

  37. Horvat B, Loukides JA, Anandan L, Brewer E, Flood PM: Production of interleukin 2 and interleukin 4 by immune CD4-CD8+ and their role in the generation of antigen-specific cytotoxic T cells. Eur J Immunol 1991; 21: 1863–1871.

    Article  PubMed  CAS  Google Scholar 

  38. Salgame P, Abrams JS, Clayberger C, et al: Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991; 254: 279–282.

    Article  PubMed  CAS  Google Scholar 

  39. Kemeny DM, Noble A, Holmes BJ, Diaz-Sanchez D: Immune regulation: a new role for the CD8+ T cell. Immunol Today 1994; 15: 107–110.

    Article  PubMed  CAS  Google Scholar 

  40. Carter LL, Dutton RW: Relative perforin-and Fas-mediated lysis in T1 and T2 CD8 effector populations. J Immunol 1995; 155: 1028–1031.

    PubMed  CAS  Google Scholar 

  41. Mosmann TR, Sad S: The expanding universe of T cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  PubMed  CAS  Google Scholar 

  42. Sad S, Marcotte R, Mosmann TR: Gytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 1995; 2: 271–279.

    Article  PubMed  CAS  Google Scholar 

  43. Seder RA, Le Gros GG: The functional role of CD8+ T helpler type 2 cells. J Exp Med 1995; 181: 5–7.

    Article  PubMed  CAS  Google Scholar 

  44. De Panfilis G: Do T’ suppressor’ cells exist? Int J Immunopathol Pharmacol 1997; 10: 107–109.

    Google Scholar 

  45. Coyle AJ, Erard F, Bertrand C, Walti S, Pircher H, Le Gros G: Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med 1995; 181: 1229–1233.

    Article  PubMed  CAS  Google Scholar 

  46. Romagnani S, Maggi E, Del Prete G: An alternative view of the Th1/Th2 switch hypothesis in HIV infection. AIDS Res Hum Retroviruses 1994; 10(5): iii–ix.

    Article  PubMed  CAS  Google Scholar 

  47. Thomas MJ, Kemeny DM: Novel CD4 and CD8 T-cell subsets. Allergy 1998; 53: 1122–1132.

    Article  PubMed  CAS  Google Scholar 

  48. Jung T, Schauer U, Heusser C, Neumann C, Rieger G: Detection of intracellular cytokines by flow cytometry. J Immunol Methods 1993; 159: 197–207.

    Article  PubMed  CAS  Google Scholar 

  49. Sander B, Andersson J, Andersson U: Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev 1991; 119: 65–93.

    Article  PubMed  CAS  Google Scholar 

  50. Zedler S, Faist E, Ostermeier B, von Donnersmarck GH, Schildberg FW: Postburn constitutional changes in T-cell reactivity occur m CD8+ rather than in CD4+ cells. J Trauma 1997; 42: 872–880; discussion 880-881.

    Article  PubMed  CAS  Google Scholar 

  51. Zedler S, Bone RC, Baue AE, v. Donnersmarck GH, Faist E: T-cell reactivity and its predictive role in immunosuppression after burns. Crit Care Med 1999; 27: 66–72.

    Article  PubMed  CAS  Google Scholar 

  52. Bone RC: Why sepsis trials fail. JAMA 1996; 276: 565–566.

    Article  PubMed  CAS  Google Scholar 

  53. Faist E, Schinkel C, Zimmer S, Kremer JP, Von Donnersmarck GH, Schildberg FW: Inadequate interleukin-2 synthesis and inter-leukin-2 messenger expression following thermal and mechanical trauma in humans is caused by defective transmembrane signalling. J Trauma 1993; 34: 846–853; discussion 853-854.

    Article  PubMed  CAS  Google Scholar 

  54. Kox WJ, Bone RC, Krausch D, et al: Interferon gamma-1β in the treatment of compensatory anti-inflammatory response syndrome: a new approach: proof of principle. Arch Intern Med 1997; 157: 389–393.

    Article  PubMed  CAS  Google Scholar 

  55. Christou NV: Host-defence mechanisms in surgical patients: a correlative study of the delayed hypersensitivity skin-test response, granulocyte function and sepsis. Can J Surg 1985; 28: 39–46, 49.

    PubMed  CAS  Google Scholar 

  56. Dunn D: Immunomodulation. In: Maekins JL (ed) Surgical Infections. New York, Scientific American, 1994; 475–491.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zedler, S., Faist, E. (2000). Pathophysiologic and Clinical Importance of Stress-Induced Th1/Th2 T Cell Shifts. In: Baue, A.E., Faist, E., Fry, D.E. (eds) Multiple Organ Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1222-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1222-5_52

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7049-2

  • Online ISBN: 978-1-4612-1222-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics