Skip to main content

Atherosclerosis: Understanding the Relationship Between Coronary Artery Disease and Stenosis Flow Reserve

  • Chapter
Textbook of Angiology

Abstract

The first study to look at the flow of fluids through tubular structures was published by Jean Leonard Marie Poiseuille in 1840.1 He described what became the basic model of blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poiseuille JLM. Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres. Comptes Rendus Academy of Science (Paris). 1840;2:961–1041.

    Google Scholar 

  2. Gregg DE, Green HD, Wiggers CL. Phasic variations in peripheral coronary resistance and their determinants. Am J Physiol. 1935;112:362–373.

    Google Scholar 

  3. Mann FC, Herrick JF, Essex HE, et al. The effect on the blood flow of decreasing the lumen of a blood vessel. Am J Physiol. 1938;4:249–252.

    Google Scholar 

  4. Gregg DE, Green HD. Phasic blood flow in coronary arteries obtained by a new differential manometer method. Am J Physiol. 1939;41:597–598.

    Google Scholar 

  5. Shipley RE, Gregg DE, Schroeder EF. An experimental study of flow patterns in various peripheral arteries. Am J Physiol. 1942;138:718–730.

    Google Scholar 

  6. Pritchard WH, Gregg DE, Shipley RE, et al. A study of flow and pattern responses in peripheral arteries to the injection of vasomotor drugs. Am J Physiol. 1942;138:731–740.

    Google Scholar 

  7. Shipley RE, Gregg DE. The effect of external constriction of a blood vessel on blood flow. Am J Physiol. 1944;141:289–296.

    Google Scholar 

  8. May AG, DeWeese JA, Rob CG. Hemodynamic effects of arterial stenosis. Surgery. 1963;53:513–524.

    PubMed  CAS  Google Scholar 

  9. May AG, DeBerg LV, DeWeese JA, et al. Critical arterial stenosis. Surgery. 1963;54:250–259.

    PubMed  CAS  Google Scholar 

  10. Fiddian RV, Byar D, Edwards EA. Factors affecting flow through a stenosed vessel. Arch Surg. 1964;88:83–90.

    Article  PubMed  CAS  Google Scholar 

  11. Berguer R, Hwang NHC. Critical arterial stenosis: a theoretical and experimental solution. Ann Surg. 1974;180:39–50.

    Article  PubMed  CAS  Google Scholar 

  12. Fleming RM, Harrington GM, Gibbs H, et al. Quantitative coronary arteriography and its assessment of atherosclerosis, I: examining the independent variables. Angiology. 1994;45:829–833.

    Article  PubMed  CAS  Google Scholar 

  13. Fleming RM, Harrington GM: Quantitative coronary arteriography and its assessment of atherosclerosis, II: calculating stenosis flow reserve from percent diameter stenosis. Angiology. 1994;45:835–840.

    Article  PubMed  CAS  Google Scholar 

  14. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol. 1974;33:87–93.

    Article  PubMed  CAS  Google Scholar 

  15. Gould, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–474.

    Article  PubMed  CAS  Google Scholar 

  16. Kirkeeide RL. Coronary obstructions, morphology and physiologic significance. In: Reiber JHC, Serruys PW, eds. Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1991:229–244.

    Chapter  Google Scholar 

  17. Brown BG. Response of normal and diseased epicardial coronary arteries to vasoactive drugs: quantitative arteriographic studies. Am J Cardiol. 1985;56:23E–29E.

    Article  PubMed  CAS  Google Scholar 

  18. Fleming RM, Kirkeeide RL, Smalling RW, et al. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol. 1991;18:945–951.

    Article  PubMed  CAS  Google Scholar 

  19. Fleming RM, Fleming DM, Gaede R. Training physicians and health care providers to accurately read coronary arteriograms. A training program. Angiology. 1996;47:349–359.

    Article  PubMed  CAS  Google Scholar 

  20. Fleming RM, Kirkeeide RL, Taegtmeyer H, et al. Comparison of technetium-99m teboroxime tomography with automated quantitative coronary arteriography and thallium-201 tomographic imaging. J Am Coll Cardiol. 1991;17:1297–1302.

    Article  PubMed  CAS  Google Scholar 

  21. Fleming RM. Improving our interpretation of true percent diameter stenosis and stenosis flow reserve from visually reported percent diameter stenosis obtained at the time of cardiac catheterization. Int J Angiol. Submitted.

    Google Scholar 

  22. Fleming RM. The importance of physiologic information from cardiac PET in assessing coronary artery disease in people with “normal” coronary angiograms. Int J Angiol. Submitted.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleming, R.M. (2000). Atherosclerosis: Understanding the Relationship Between Coronary Artery Disease and Stenosis Flow Reserve. In: Chang, J.B. (eds) Textbook of Angiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1190-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1190-7_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7039-3

  • Online ISBN: 978-1-4612-1190-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics