Skip to main content
  • 595 Accesses

Abstract

In 1974, A. Sampson [16] gave a rather technical matrix-theoretic proof that any complex matrix of determinant ±1 can be written as a product of finitely many involutions. A brash, young (at the time) algebraist, I quickly saw a group-theoretic proof that gives the same result for matrices over any field, and involves very little computation. Indeed, my proof occupied one and a half typed pages, most of it devoted to a couple of special cases. I sent a copy off to Hans Schneider for publication in Linear Algebra and its Applications, and distributed copies in the mailboxes of a few selected colleagues. One of those colleagues was Paul Halmos (that was a different time and place for both of us). A few hours later, Paul passed me in the hall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Ballantine, Some involutory similarities, Linear Multilinear Algebra 3 (1975), 19–23; addendum, ibid. 4 (1976), 69.

    Article  MathSciNet  Google Scholar 

  2. C. Ballantine, Products of involutory matrices I, Linear Multilinear Algebra 5 (1977), 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Bass, Some Problems in “Classical ”Algebraic K-Theory, Lecture Notes in Mathematics, Springer-Verlag, New York, 1973, Vol. 342. pp. 3–73.

    Google Scholar 

  4. J. Berggren, Finite groups in which every element is conjugate to its inverse, Pacific J. Math. 28 (1969), 289–293.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Berggren, Solvable and supersolvable groups in which every element is conjugate to its inverse, Pacific J. Math. 37 (1971), 21–27.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Djokovic, Products of two involutions, Arch. Math. 18 (1967), 582–584.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Ellers, Products of two involutory matrices over skewfields, Linear Algebra Appl. 26 (1979), 59–63.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Guralnick, Similarity of matrices over local rings, Linear Algebra Appl. 41 (1981), 161–174.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Gustafson, P. Halmos, and H. Radjavi, Products of involutions, Linear Algebra Appl. 13 (1976), 157–162.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Halmos,I Want to be a Mathematician, Springer-Verlag, New York, 1985.

    Google Scholar 

  11. P. Halmos and S. Kakutani, Products of symmetries, Bull. Am. Math. Soc. 64 (1958), 77–78.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Higman, B. Neumann, and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254.

    Article  MathSciNet  Google Scholar 

  13. F. Hoffman and E. Paige, Products of involutions in the general linear group, Indiana Univ. Math. J. 20 (1971), 1017–1020.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kerber, Representations of Permutation Groups I, Lecture Notes in Mathematics, Springer-Verlag, New York, 1971, Vol. 240.

    MATH  Google Scholar 

  15. K. Liu, Decompositions of matrices into three involutions, Linear Algebra Appl. 111 (1988), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Sampson, A note on a new matrix decomposition, Linear Algebra Appl. 8 (1974), 459–463.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

    MATH  Google Scholar 

  18. A. Sourour, A factorization theorem for matrices, Linear Multilinear Algebra 19 (1986), 141–147.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Waterhouse, Solution of advanced problem 5876, Am. Math. Monthly 81 (1974), p. 1035.

    Article  MathSciNet  Google Scholar 

  20. M. Wonenburger, Transformations which are products of two involutions, J. Math. Mech. 16 (1966), 327–338.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gustafson, W.H. (1991). On Products of Involutions. In: Ewing, J.H., Gehring, F.W. (eds) PAUL HALMOS Celebrating 50 Years of Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0967-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0967-6_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6964-9

  • Online ISBN: 978-1-4612-0967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics