Skip to main content

Introduction to Detonation Physics

  • Chapter
Explosive Effects and Applications

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

In this chapter we will examine the propagation of a steady-state detonation wave and the parameters affecting some aspects of detonation. The non-steady-state aspects, those that pertain to initiating detonation, are described elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Cheret, R. (1993). Detonation of Condensed Explosives. Springer-Verlag, New York.

    Google Scholar 

  • Cook, M.A. (1958). The Science of High Explosives. Reinhold, New York.

    Google Scholar 

  • Cooper, P.W. (1996). Explosives Engineering. VCH, New York.

    Google Scholar 

  • Fickett, W. and Davis, W.C. (1979). Detonation. University of California Press, Berkeley, CA.

    Google Scholar 

  • Fickett, W. (1985). Introduction to Detonation Theory. University of California Press, Berkeley, CA.

    Google Scholar 

  • Johansson, C.R. and Persson, P.A. (1970). Detonics of High Explosives. Academic Press, London.

    Google Scholar 

  • Mader, C.L. (1979). Numerical Modeling of Detonations. University of California Press, Berkeley, CA.

    Google Scholar 

  • Zel’dovich Ya.B. and Raizer, Yu.P. (1967). Physics of Shock Waves and HighTemperature Hydrodynamic Phenomena. Academic Press, New York.

    Google Scholar 

  • Campbell, A.W. and Engelke, R. (1976).The diameter effect in high-density heterogeneous explosives. Proc. 6th Symposium (International) on DetonationCoronado, CA.

    Google Scholar 

  • Cooper, P.W. (1989).Shock behavior of explosives about the C–J point. Proc. 9th Symposium (International) on DetonationPortland, OR.

    Google Scholar 

  • Cooper, P.W. (1992).Extending estimation of C–J pressure of explosives to the very low density region. 18th International Pyrotechnics SymposiumBreckenridge, CO.

    Google Scholar 

  • Cooper, P.W. (1993).A new look at the run distance correlation and its relationship to other non-steady-state phenomena. Proc. 10th Symposium (International) on DetonationBoston, MA.

    Google Scholar 

  • Cooper, P.W. (1996).Explosives Engineering. VCH, New York.

    Google Scholar 

  • Cowperthwaite, M. and Zwisler, W.H. (1973).TIGER Computer Program Documentation. SRI Publication No. Z106.

    Google Scholar 

  • Dobratz, B.M. (1985).LLNL Handbook of Explosives. UCRL-52997, Lawrence Livermore National Laboratory, CA (March 1981).

    Google Scholar 

  • Fried, L.E. (1995).CHEETAH 1.22 User’s Manual. UCRL-MA-117541, Lawrence Livermore National Laboratory, CA.

    Google Scholar 

  • Gibbs, T.R. and Popolato, A. (1980).LASL Explosive Property Data. University of California Press, Berkeley, CA.

    Google Scholar 

  • Kamlet, M.J. and Jacobs, S.J. (1968). Chemistry of detonations, I. A simple method of calculating detonation properties of CHNO explosives.J. Chem. Phys. 48, 23–35.

    Article  ADS  Google Scholar 

  • Levine, H.B. and Sharples, R.E. (1962).Operator’s Manual for RUBY. UCRL6815, Lawrence Livermore Laboratory, CA.

    Google Scholar 

  • Mader, C.L. (1967).FORTRAN BKW: A Code for Computing the Detonation Properties of Explosives. LA-3704, Los Alamos Scientific Laboratory.

    Google Scholar 

  • Mader, C.L., Johnson, J.N., and Stone, S.L. (1982).Los Alamos Explosives Performance Data. University of California Press, Berkeley, CA.

    Google Scholar 

  • Nichols, A.L. and Ree, F.H. (1990).CHEQ 2.0 User’s Manual. UCRL-MA106754, Lawrence Livermore National Laboratory, CA.

    Google Scholar 

  • Pinegree, M. et al. (1985).Expansion isentropes of TATB compositions released into argon. Proc. 8th Symposium (International) on DetonationAlbuquerque, NM.

    Google Scholar 

  • Rothstein, L.R. and Petersen, R. (1979). Predicting high explosives detonation velocities from their composition and structure.Propellants and Explosives4, 56–60.

    Article  Google Scholar 

  • Rothstein, L.R. and Petersen, R. (1981). Predicting high explosives detonation velocities from their composition and structure.Propellants and Explosives6, 91–93.

    Article  Google Scholar 

  • Stine, J.R. (1990). On predicting properties of explosives—Detonation velocity.J. Energetic Mater. 8, 41–73.

    Article  Google Scholar 

  • Urizer, M.L. (1981).LLNL Handbook of Explosives. UCRL-52997, pp. 8.10–8.12, Lawrence Livermore National Laboratory (updated January 1985).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, P.W. (1998). Introduction to Detonation Physics. In: Zukas, J.A., Walters, W.P. (eds) Explosive Effects and Applications. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0589-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0589-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95558-2

  • Online ISBN: 978-1-4612-0589-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics