Skip to main content

Bayesian Approach to Wavelet Decomposition and Shrinkage

  • Chapter
Bayesian Inference in Wavelet-Based Models

Part of the book series: Lecture Notes in Statistics ((LNS,volume 141))

Abstract

We consider Bayesian approach to wavelet decomposition. We show how prior knowledge about a function’s regularity can be incorporated into a prior model for its wavelet coefficients by establishing a relationship between the hyperparameters of the proposed model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relation may be seen as giving insight into the meaning of the Besov space parameters themselves. Furthermore, we consider Bayesian wavelet-based function estimation that gives rise to different types of wavelet shrinkage in non-parametric regression. Finally, we discuss an extension of the proposed Bayesian model by considering random functions generated by an overcomplete wavelet dictionary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich, F. & Benjamini, Y. (1996). Adaptive thresholding of wavelet coefficients. Computational Statistics and Data Analysis 22, 351–361.

    Article  MathSciNet  Google Scholar 

  • Abramovich, F. & Silverman, B.W. (1998). Wavelet decomposition approaches to statistical inverse problems. Biometrika 85, 115–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Abramovich, F., Sapatinas, T. & Silverman, B.W. (1998a). Wavelet thresholding via a Bayesian approach. J. Roy. Statist. Soc. B 60, 725–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Abramovich, F., Sapatinas, T. & Silverman, B.W. (1998b). Stochastic expansions in an overcomplete wavelet dictionary. Probability Theory and Related Fields (under invited revision).

    Google Scholar 

  • Chen, S.S.B., Donoho, D.L. & Saunders, M.A. (1999). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20, 33–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Chipman, H.A., Kolaczyk, E.D. & McCulloch, R.E. (1997). Adaptive Bayesian wavelet shrinkage. J. Am. Stat. Ass. 92, 1413–1421.

    Article  MATH  Google Scholar 

  • Clyde, M. & George, E.I. (1998). Robust empirical Bayes estimation in wavelets. Discussion Paper 98-21, Institute of Statistics and Decision Sciences, Duke University, USA.

    Google Scholar 

  • Clyde, M., Parmigiani, G. & Vidakovic, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika 85, 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., Daubechies, I., Jawerth, B. & Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Applied and Computational Harmonic Analysis 1, 54–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Coifman, R.R. & Donoho, D.L. (1995). Translation-invariant de-noising. In Wavelets and Statistics, Lecture Notes in Statistics 103, Antoniadis, A. and Oppenheim, G. (Eds.), pp. 125–150, New York: Springer-Verlag.

    Google Scholar 

  • Coifman, R.R. & Wickerhauser, M.V. (1992). Entropy-based algorithms for best-basis selection. IEEE Transactions on Information Theory 38, 713–718.

    Article  MATH  Google Scholar 

  • Crouse, M., Nowak, R. & Baraniuk, R. (1998). Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 46, 886–902.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1988). Time-frequency localization operators: a geometric phase space approach. IEEE Transactions on Information Theory 34, 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Davis, G., Mallat, S.G. & Zhang, Z. (1994). Adaptive time-frequency approximations with matching pursuit. In Wavelets: Theory, Algorithms, and Applications, Chui, C.K., Montefusco, L. and Puccio, L. (Eds.), pp. 271–293, San Diego: Academic Press.

    Google Scholar 

  • DeVore, R.A., Jawerth, B. & Popov, V. (1992). Compression of wavelet decompositions. American Journal of Mathematics 114, 737–785.

    Article  MathSciNet  MATH  Google Scholar 

  • DeVore, R.A. & Popov, V. (1988). Interpolation of Besov Spaces. Transactions of the American Mathematical Society 305, 397–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D.L. & Johnstone, I.M. (1994). Ideal spatial adaption by wavelet shrinkage. Biometrika 81, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D.L. & Johnstone, I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Ass. 90, 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen, M., Malfait, M. & Bultheel, A. (1997). Generalized cross validation for wavelet thresholding. Signal Processing 56, 33–44.

    Article  MATH  Google Scholar 

  • Johnstone, I.M. (1994). Minimax Bayes, asymptotic minimax and sparse wavelet priors. In Statistical Decision Theory and Related Topics, V, Gupta, S.S. and Berger, J.O. (Eds.), pp. 303–326, New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Johnstone, I.M. & Silverman, B.W. (1997). Wavelet threshold estimators for data with correlated noise. J. Roy. Statist. Soc. B 59, 319–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone, I.M. & Silverman, B.W. (1998). Empirical Bayes approaches to mixture problems and wavelet regression. Technical Report, Department of Mathematics, University of Bristol, UK.

    Google Scholar 

  • Lang, M., Guo, H., Odegard, J.E., Burrus, C.S. & Wells Jr, R.O. (1996). Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Processing Letters 3, 10–12.

    Article  Google Scholar 

  • Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693.

    Article  MATH  Google Scholar 

  • Mallat, S.G. & Zhang, Z. (1993). Matching pursuit in a time-frequency dictionary. IEEE Transactions on Signal Processing 41, 3397–3415.

    Article  MATH  Google Scholar 

  • Meyer, Y. (1992). Wavelets and Operators. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Nason, G.P. (1996). Wavelet shrinkage using cross-validation. J. Roy. Statist. Soc. B 58 463–479.

    MathSciNet  MATH  Google Scholar 

  • Nason, G.P. & Silverman, B.W. (1994). The discrete wavelet transform in S. Journal of Computational and Graphical Statistics 3, 163–191.

    Google Scholar 

  • Nason, G.P. & Silverman, B.W. (1995). The stationary wavelet transform and some statistical applications. In Wavelets and Statistics, Lecture Notes in Statistics 103, Antoniadis, A. and Oppenheim, G. (Eds.), pp. 281–300, New York: Springer-Verlag.

    Google Scholar 

  • Ogden, T. & Parzen, E. (1996a). Data dependent wavelet thresholding in non-parametric regression with change-point applications. Computational Statistics and Data Analysis 22, 53–70.

    Article  MATH  Google Scholar 

  • Ogden, T. & Parzen, E. (1996b). Change-point approach to data analytic wavelet thresholding. Statistics and Computing 6, 93–99.

    Article  Google Scholar 

  • Peetre, J. (1975). New Thoughts on Besov Spaces. Durham: Duke University Press.

    Google Scholar 

  • Silverman, B.W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). J. Roy. Statist. Soc. B 47, 1–52.

    MATH  Google Scholar 

  • Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151.

    Article  MATH  Google Scholar 

  • Steinberg, D.M. (1990). A Bayesian approach to flexible modeling of multivariate response for functions. Journal of Multivariate Analysis 34, 157–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidakovic, B. (1998). Non-linear wavelet shrinkage with Bayes rules and Bayes factors. J. Am. Stat. Ass. 93, 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1983). Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. J. Roy. Statist. Soc. B 45, 133–150.

    MathSciNet  MATH  Google Scholar 

  • Wang, Y. (1996). Function estimation via wavelet shrinkage for long-memory data. Ann. Stat. 24, 466–484.

    Article  MATH  Google Scholar 

  • Wang, Y. (1997). Fractal function estimation via wavelet shrinkage. J. Roy. Statist. Soc. B 59, 603–612.

    Article  MATH  Google Scholar 

  • Wojtaszczyk, P. (1997). A Mathematical Introduction to Wavelets. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abramovich, F., Sapatinas, T. (1999). Bayesian Approach to Wavelet Decomposition and Shrinkage. In: Müller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics, vol 141. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0567-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0567-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98885-6

  • Online ISBN: 978-1-4612-0567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics