Skip to main content

Part of the book series: Contemporary Issues in Biomedicine, Ethics, and Society ((CIBES))

Abstract

There is increasing evidence that the progress of biologic aging results from accumulated free radical damage, and that a significant fraction of cancer is also caused by deleterious free radical reactions. Free radicals originate from the utilization of oxygen and the metabolism of organic compounds, and can be scavenged in living organisms by a range of enzymes and small antioxidant molecules. In this review, the various theories of aging are examined, as are the possible origins of cancer. The mitochondrion is proposed as the common link between cancer and aging, and the free radical reactions that occur in the mitochondrion are explained. Some of the important free radical reactions, both essential and deleterious, that occur continuously in a living organism, are discussed, and an outline is given of the multi-layered defense system that all aerobic organisms have against excess free radicals. The possibility that rate of aging and cancer incidence can be reduced by dietary supplementation with antioxidants is discussed in light of human and animal experiments, and suggestions are given for future research into the role of free radicals in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Al-Turk, and S. J. Stohs. Hepatic glutathione content and aryl hydrocarbon hydroxylase activity of acetaminophen-treated mice as a function of age. Drug Chem. Toxicol. 4, 37–48 (1981).

    PubMed  CAS  Google Scholar 

  2. American Cancer Society. Cancer Facts and Figures. American Cancer Society, New York, 1986.

    Google Scholar 

  3. B. N. Ames. Dietary carcinogens and anticarcinogens. Science 221, 1256–1264 (1983).

    PubMed  CAS  Google Scholar 

  4. S. S. Ansher, P. Dolan, and E. Bueding. Biochemical effects of dithiolthiones. Food Chem. Toxic. 24, 405–415 (1986).

    CAS  Google Scholar 

  5. J. C. Bailar, and E. M. Smith. Progress against cancer? N. Engl. J. Med. 314, 1226–1232 (1986).

    PubMed  Google Scholar 

  6. A. K. Balin, and R. G. Allen. Mechanisms of biologic aging. Dermatol. Clin. 4, 347–358 (1986).

    PubMed  CAS  Google Scholar 

  7. H. Bartsch, and R. Montesano. Relevance of nitrosamines to human cancer. Carcinogenesis 5, 1381–1393 (1984).

    PubMed  CAS  Google Scholar 

  8. J. Z. Byczkowski, and T. Gessner. Biological role of superoxide ion-radical. Int. J. Biochem. 20, 569–580 (1988).

    PubMed  CAS  Google Scholar 

  9. J. Cairns. Cancer: Science and Society. W. H. Freeman and Company, San Francisco, 1978.

    Google Scholar 

  10. R. F. Cathcart. Vitamin C: the nontoxic, nonrate-limited, antioxidant free radical scavenger. Med. Hypotheses 18, 61–77 (1985).

    PubMed  CAS  Google Scholar 

  11. P. A. Cerutti. Prooxidant states and tumor promotion. Science 227, 375–381 (1985).

    PubMed  CAS  Google Scholar 

  12. C. K. Chow. Nutritional influence on cellular antioxidant defense systems. Amer. J. Clin. Nutr. 32, 1066–1081 (1979).

    PubMed  CAS  Google Scholar 

  13. L. C. Clark. The epidemiology of selenium and cancer. Fed. Proc. 44, 2584–2589 (1985).

    PubMed  CAS  Google Scholar 

  14. L. C. Clark, and G. F. Combs. Selenium compounds and the prevention of cancer. Research needs and public implications. J. Nutr. 116, 170–173 (1986).

    PubMed  CAS  Google Scholar 

  15. C. E. Cross. Oxy radicals and human disease. Ann. Intern. Med. 107, 526–545 (1987).

    PubMed  CAS  Google Scholar 

  16. R. G. Cutler. Free radicals and aging. In Molecular Basis of Ageing, A. K. Roy and B. Chatterjee, eds., Academic, New York, 1984, pp. 263–354.

    Google Scholar 

  17. R. G. Cutler. Antioxidants, aging, and longevity. In Free Radicals In Biology. Vol. VI, W. A. Pryor, ed., Academic, New York, 1984a, pp. 371–428.

    Google Scholar 

  18. J. DiGuiseppi, and I. Fridovich. The toxicology of molecular oxygen. CRC Crit. Rev. Toxicol. 12, 315–342 (1984).

    CAS  Google Scholar 

  19. R. Doll and R. Peto. The causes of cancer. Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 66, 1191–1308 (1981).

    PubMed  CAS  Google Scholar 

  20. I. E. Dreosti. Selenium. J. Food Nutr. 43, 60–78 (1986).

    Google Scholar 

  21. N. M. Emanuel. Kinetics and free-radical mechanisms of aging and carcinogenesis. In Age Related Factors in Carcinogenesis, A. Likhachev, V. Anisimov, and R. Montesano, eds., International Agency for Research on Cancer, Lyon, pp. 127–150.

    Google Scholar 

  22. S. Epstein. The Politics of Cancer. Anchor Press, New York, 1979.

    Google Scholar 

  23. J. E. Fleming, J. Miguel, and K. G. Bensch. Age dependent changes in mitochondria. Basic Life Sci. 35, 143–156 (1985).

    PubMed  CAS  Google Scholar 

  24. J. E. Fleming, J. Miguel, S. F. Cottrell, L. S. Yengoyan, and A. C. Economos. Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontol. 28, 44–53 (1982).

    CAS  Google Scholar 

  25. T. M. Florence. Degradation of protein disulfide bands in dilute alkali. Biochem. J. 189, 507--520 (1980).

    PubMed  CAS  Google Scholar 

  26. T. M. Florence. Cancer and ageing. The free radical connection. Chem. Australia 50, 166–174 (1983).

    CAS  Google Scholar 

  27. T. M. Florence. The production of hydroxyl radical from hydrogen peroxide. J. Inorg. Biochem. 22, 221–230 (1984).

    CAS  Google Scholar 

  28. T. M. Florence. The degradation of cytochrome-c by hydrogen peroxide. J. Inorg. Biochem. 23, 131–141 (1985).

    PubMed  CAS  Google Scholar 

  29. T. M. Florence, J. L. Stauber, and K. J. Mann. The reaction of copper -2,9dimethyl-1,10-phenanthroline with hydrogen peroxide. J. Inorg. Biochem. 24, 243–254 (1985).

    CAS  Google Scholar 

  30. T. M. Florence. The production of hydroxyl radical from the reaction between hydrogen peroxide and NADH. J. Inorg. Biochem. 28, 33–37 (1986).

    PubMed  CAS  Google Scholar 

  31. T. M. Florence, and J. L. Stauber. Toxicity of copper complexes to the marine diatom Nitzschia closterium. Aquatic Toxicol. 8, 11–26 (1986).

    CAS  Google Scholar 

  32. T. M. Florence, and J. L. Stauber. Manganese catalysis of dopamine oxidation. Sci. Total Environ. 78, 223–240 (1989).

    Google Scholar 

  33. B. A. Freeman, and J. D. Crapo. Biology of disease: free radicals and tissue injury. Lab. Invest. 47, 412–426 (1982).

    PubMed  CAS  Google Scholar 

  34. D. V. Frost. What do losses in selenium and arsenic bioavailability signify for health? Sci. Total Environ. 28, 455–466 (1983).

    PubMed  CAS  Google Scholar 

  35. L. Fucci, C. N. Oliver, M. J. Coon, and E.R. Stadtman. Inactivation of key metabolic enzymes by mixed function oxidation reactions: Possible implication in protein turnover and ageing. Proc. Natl. Acad. Sci. USA 80, 1521–1525 (1983).

    PubMed  CAS  Google Scholar 

  36. A. Gafni. Age-related modifications in a muscle enzyme. In Modifications of Proteins During Ageing, R. C. Adelman and E. E. Dekker, eds., Alen R. Liss, New York, 1985, pp. 19–38.

    Google Scholar 

  37. K. F. Gey. On the antioxidant hypothesis with regard to arteriosclerosis. Biblthca. Nutr. Dieta. 37, 53–91 (1986).

    Google Scholar 

  38. K. F. Gey, G. B. Brubacher, and H. B. Stähelin. Plasma levels of antioxidant vitamins in relation to ischemic heart disease and cancer. Amer. J. Clin. Nutr. 45, 1368–1377 (1987).

    PubMed  CAS  Google Scholar 

  39. G. A. Glass and D. Gershon. Enzymatic changes in rat erythrocytes with increasing cell and donor age. Biochem. Biophys. Res. Comm. 103, 1245–1253 (1981).

    PubMed  CAS  Google Scholar 

  40. S. J. Gould. One standard lifespan. New Scientist 81, 388–389 (1979).

    Google Scholar 

  41. C. Greenwood, and H. A. Hill. Oxygen and life. Chem. in Brit. 18, 194–196 (1982).

    CAS  Google Scholar 

  42. A. C. Griffin. Role of selenium in the chemoprevention of cancer. Adv. Cancer Res. 29, 419–442 (1979).

    PubMed  CAS  Google Scholar 

  43. J. M. Gutteridge, T. Westermarck, and B. Halliwell. Oxygen radical damage in biological systems. In Free Radicals,Ageing, and Degenerative Diseases, J. E. Johnson, R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 99–139.

    Google Scholar 

  44. B. Halliwell. Oxygen radicals: A commonsense look at their nature and medical importance. Med. Biol. 62, 71–77 (1984).

    PubMed  CAS  Google Scholar 

  45. B. Halliwell. Free radicals and metal ions in health and disease. Proc. Nutr. Soc. 46, 13–26 (1987).

    PubMed  CAS  Google Scholar 

  46. B. Halliwell and J. M. Gutteridge. Oxygen toxicity, oxygen radicals, transition metals, and disease. Biochem. J. 219, 1–14 (1984).

    PubMed  CAS  Google Scholar 

  47. B. Halliwell, and J. M. Gutteridge. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, 1985.

    Google Scholar 

  48. B. Halliwell, and J. M. Gutteridge. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89–193 (1985).

    PubMed  CAS  Google Scholar 

  49. B. Halliwell, and J. M. Gutteridge. Oxygen radicals and the nervous system. Trends in Neurosci. 8, 22–26 (1985).

    CAS  Google Scholar 

  50. B. Halliwell, J. M. Gutteridge, and D. Blake. Metal ions and oxygen radical reactions in human inflammatory joint disease. Phil. Trans. Royal Soc. Lond. B311, 659–671 (1985).

    Google Scholar 

  51. B. Halliwell, and J. M. Gutteridge. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501–514 (1986).

    PubMed  CAS  Google Scholar 

  52. B. Halliwell, and J. M. Gutteridge. Iron and free radical reactions: two aspects of antioxidant protection. TIBS 11, 372–375 (1986).

    CAS  Google Scholar 

  53. D. Harman. “The biologic clock: The mitochondria?” J. Amer. Geriat. Soc. 20, 145–149 (1972).

    PubMed  CAS  Google Scholar 

  54. D. Harman. The aging process. Proc. Natl. Acad. Sci. USA 78, 7124–7128 (1981).

    PubMed  CAS  Google Scholar 

  55. D. Harman. Free radicals and the origination, evolution, and present status of the free radical theory of aging. In Free Radicals in Molecular Biology,Ageing, and Disease, D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds., Raven, New York, 1984, pp. 1–42.

    Google Scholar 

  56. D. Harman. Free radical theory of aging: The “free radical” diseases. Age 7, 111–131 (1984).

    CAS  Google Scholar 

  57. D. Harman. Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging, and disease processes. In Free Radicals, Ageing, and Degenerative Diseases, J. E. Johnson, R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 3–49.

    Google Scholar 

  58. L. Hayflick. Theories of biological aging. Exp. Gerontol. 20, 145–159 (1985).

    PubMed  CAS  Google Scholar 

  59. C. H. Hennekens. Micronutrients and cancer prevention. N. Engl. J. Med. 315, 1288–1289 (1986).

    PubMed  CAS  Google Scholar 

  60. D. Hoffmann. Chemical carcinogens in tobacco. In Cancer Risks, P. Bannasch, ed., Springer-Verlag, Berlin, 1987, pp. 95–113.

    Google Scholar 

  61. R. Holliday. The ageing process is a key problem in biomedical research. Lancet (ii), 1386–1387 (1984).

    Google Scholar 

  62. E. S. Hughes, F. T. McDermott, A. L. Polglase, W. R. Johnson, and E. A. Pihl. Large bowel cancer-the next move? Med. J. Australia 1, 36–37 (1982).

    PubMed  CAS  Google Scholar 

  63. A. Huxley. Brave New World. Chatto and Windus, London, 1932.

    Google Scholar 

  64. C. Ip. Selenium inhibition of chemical carcinogenesis. Fed. Proc. 44, 2573–2578 (1985).

    PubMed  CAS  Google Scholar 

  65. T. W. Kensler, and M. A. Trush. Role of oxygen radicals in tumour promotion. Environ. Mutagen. 6, 593–616 (1984).

    PubMed  CAS  Google Scholar 

  66. P. M. Kidd. Germanium-132 (Ge-132): Homeostatic normalizer and immunostimulant. A review of its preventive and therapeutic efficacy. Int. Clin. Nutr. Rev. 7, 11–20 (1987).

    CAS  Google Scholar 

  67. D. Lathia, A. Braasch, and V. Theissen. Inhibitory effects of vitamin C and E on in vitro formation of N-nitrosamine under physiological conditions. Front. Gastrointest. Res. 14, 151–156 (1988).

    CAS  Google Scholar 

  68. L. A. Loeb, V. L. Emster, K. E. Wamer, J. Abbots, and J. Laszio. Smoking and lung cancer: An overview. Cancer Res. 44, 5940–5958 (1984).

    PubMed  CAS  Google Scholar 

  69. D. L. Marcus, N. G. Ibrahim, and M. L. Freedman. Age-related decline in the biosynthesis of mitochondrial inner membrane proteins. Exp. Gerontol. 17, 333–341 (1982).

    PubMed  CAS  Google Scholar 

  70. J. L. Marx. Oxygen free radicals linked to many diseases. Science 235, 529–531 (1987).

    PubMed  CAS  Google Scholar 

  71. H. R. Massie, V. R. Aiello, and T. J. Doherty. Dietary vitamin C improves the survival of mice. Gerontology 30, 371–375 (1984).

    PubMed  CAS  Google Scholar 

  72. J. M. McCord. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159–163 (1985).

    PubMed  CAS  Google Scholar 

  73. E. C. Miller, and J. A. Miller. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47, 2327–2345 (1981).

    PubMed  CAS  Google Scholar 

  74. J. Miguel, and J. Fleming. Theoretical and experimental support for an “oxygen radical-mitochondrial injury” hypothesis of cell aging. In Free Radicals, Ageing, and Degenerative Diseases, J. E. Johnson, R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 51–74.

    Google Scholar 

  75. C. S. Muir, and D. M. Parkin. The world cancer burden: prevent or perish. Brit. Med. J. 290, 5–6 (1985).

    CAS  Google Scholar 

  76. A. Naqui, and B. Chance. Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 55, 137–166 (1986).

    PubMed  CAS  Google Scholar 

  77. L. W. Oberley, and T. D. Oberley. Free radicals, cancer, and aging. In Free Radicals,Ageing and Degenerative Diseases, J. E. Johnson, R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 325–371.

    Google Scholar 

  78. L. W. Oberley, T. D. Oberley, and G. R. Buettner. Cell differentiation, aging, and cancer. The possible roles of superoxide and superoxide dis-mutases. Med. Hypotheses 6, 249–268 (1980).

    PubMed  CAS  Google Scholar 

  79. C. N. Oliver, R. Fulks, R. L. Levine, L. Fucci, A. J. Rivett, J. E. Roseman, and E. R. Stadtman. Oxidative inactivation of key metabolic enzymes. In Molecular Basis of Ageing, A. K. Roy and B. Chatterjee, eds., Academic, New York, 1984, pp. 235–262.

    Google Scholar 

  80. T. Ono, and S. Okada. Unique increase of superoxide dismutase level in brains of long living mammals. Exp. Gerontol. 19, 349–354 (1985).

    Google Scholar 

  81. L. Pauling. Evolution and the need for ascorbic acid. Proc. Natl. Acad. Sci. USA 67, 1643–1648 (1970).

    PubMed  CAS  Google Scholar 

  82. L. Pauling. How to Live Longer and Feel Better. Avon Books, New York, 1986.

    Google Scholar 

  83. R. Peto, R. Doll, J. D. Buckley, and M. G. Spron. Can dietary beta-carotene materially reduce human cancer rates? Nature 290 201–208 (1981).

    PubMed  CAS  Google Scholar 

  84. H. C. Pitot. Fundamentals of Oncology. Marcel Dekker, New York, 1981.

    Google Scholar 

  85. P. H. Proctor, and E. S. Reynolds. Free radicals and disease in man. Physiol. Chem. Phys. Med. NMR 16, 175–195 (1984).

    PubMed  CAS  Google Scholar 

  86. W. A. Pryor. Cancer and free radicals. Basic Life Sci. 39, 45–59 (1986).

    PubMed  CAS  Google Scholar 

  87. W. A. Pryor. Oxyradicals and related species: Their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48, 657–667 (1986).

    CAS  Google Scholar 

  88. M. F. Robinson. The New Zealand selenium experience. Amer. J. Clin. Nutr. 48, 521–534 (1988).

    PubMed  CAS  Google Scholar 

  89. M. Rothstein. The alteration of enzymes in aging animals. Basic Life Sci. 35, 193–204 (1985).

    PubMed  CAS  Google Scholar 

  90. J. T. Salonen, G. Alfthan, J. K. Huttunen, and P. Puska. Association between serum selenium and the risk of cancer. Amer. J. Epidemiol. 120, 342–349 (1984).

    CAS  Google Scholar 

  91. J. T. Salonen, R. Salonen, R. Lappetelainen, P. H. Maenpaa, G. Alfthan, and P. Puska. Risk of cancer in relation to serum concentrations of selenium and vitamins A and E: matched case-control analysis of prospective data. Brit. Med. J. 290, 417–420 (1985).

    CAS  Google Scholar 

  92. R. J. Shamberger. Nutrition and Cancer, Plenum, New York, 1984.

    Google Scholar 

  93. R. J. Shamberger. Selenium. In Biochemistry of the Essential Ultratrace Elements, E. Frieden, ed., Plenum New York, 1984, pp. 201–237.

    Google Scholar 

  94. D. M. Shankel, P. E. Hartman, T. Kada, and A. Hollaender. Synopsis of the first international conference on mutagenesis and anticarcinogenesis. Environ. Mutagen. 9, 87–103 (1987).

    PubMed  CAS  Google Scholar 

  95. P. Sims. Metabolic activation of chemical carcinogens. Brit. Med. Bull. 36, 11–18 (1980).

    PubMed  CAS  Google Scholar 

  96. T. F. Slater. Free radical mechanisms in tissue injury. Biochem. J. 222, 1–15 (1984).

    PubMed  CAS  Google Scholar 

  97. T. F. Slater, K. H. Cheeseman, and K. Proudfoot. Free radicals, lipid peroxidation, and cancer. In Free Radicals in Molecular Biology, Ageing, and Disease, D. Armstrong, R. S. Sohal, R. E. Cutler, and T. F. Slater, eds., Raven, New York, 1984, pp. 293–355.

    Google Scholar 

  98. R. S. Sohal, and R. G. Allen. Relationship between metabolic rate, free radicals, differentiation, and aging: A unified theory. Basic Life Sci. 35, 75–104 (1985).

    PubMed  CAS  Google Scholar 

  99. R. S. Sohal, P. L. Toy, K. J. Farmer. Age-related changes in the redox status of the housefly, Musca domestica. Arch. Gerontol. Geriatr. 6, 95–100 (1987).

    CAS  Google Scholar 

  100. J. L. Stauber, and T. M. Florence. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94, 511–519 (1987).

    CAS  Google Scholar 

  101. K. S. Sundaram, R. London, S. Manimerkalai, P. P. Nair, and P. Goldstein. a-Tocopherol and serum lipoproteins. Lipids 16, 223–227 (1981).

    PubMed  CAS  Google Scholar 

  102. J. M. Tomlasoff, T. Ono, and R. G. Cutler. Superoxide dismutase: correlation with life span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. USA 77, 2777–2781 (1980).

    Google Scholar 

  103. J. R. Totter. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc. Natl. Acad. Sci. USA 77, 1763–1767 (1980).

    PubMed  CAS  Google Scholar 

  104. M. Vuillaume. Reduced oxygen species, mutation, induction, and cancer initiation. Mut. Res. 186, 43–72 (1987).

    CAS  Google Scholar 

  105. N. J. Wald, J. Boreham, J. L. Hayward, and R. D. Bulbrook. Plasma retinol, 13-carotene, and vitamian E levels in relation to the future risk of breast cancer. Brit. J. Cancer 49, 321–324 (1984).

    PubMed  CAS  Google Scholar 

  106. D. D. Wayner, G. W. Burton, K. U. Ingold, L. R. Barclay, and S. J. Locke. The relative contribution of vitamin E, urate, ascorbate, and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochem. Biophys. Acta 924, 408–419 (1987).

    PubMed  CAS  Google Scholar 

  107. H. Wefers, and H. Sies. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Europ. J. Biochem. 174, 353–357 (1988).

    CAS  Google Scholar 

  108. E. D. Weinberg. Iron witholding: A defense against infection and neoplasia. Physiol. Rev. 64, 65–102 (1984).

    PubMed  CAS  Google Scholar 

  109. R. L. Willson. Free radical protection: why vitamin E, not vitamin C, I3-carotene or glutathione? Ciba Foundation Symposium No. 101, 1983, pp. 19–44.

    PubMed  CAS  Google Scholar 

  110. M. Yaffe, and G. Schatz. The future of mitochondrial research. TIBS 9, 179–181 (1984).

    Google Scholar 

  111. V. R. Young. Vitamins and the aging process. Geriatrics 2, 418–435 (1984).

    Google Scholar 

  112. R. J. Youngman. Oxygen activation: is the hydroxyl radical always biologically relevant? TIBS 9, 280–283 (1984).

    CAS  Google Scholar 

  113. S.-Y. Yu, Y.-J. Chu, X.-L. Gong, C. Hou, W.-G. Li, H.-M. Gong, and J.-R. Xie. Regional variation of cancer mortality incidence and its relation to selenium levels in China. Biol. Trace Element Res. 7, 21–29 (1985).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Florence, T.M. (1991). The Role of Free Radicals in Cancer and Aging. In: Dreosti, I.E. (eds) Trace Elements, Micronutrients, and Free Radicals. Contemporary Issues in Biomedicine, Ethics, and Society. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0419-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0419-0_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6754-6

  • Online ISBN: 978-1-4612-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics