Skip to main content

Essential Trace Elements in Antioxidant Processes

  • Chapter
Trace Elements, Micronutrients, and Free Radicals

Abstract

The antioxidant defense system is comprised of a number of interconnecting, and overlapping, components that include both enzymatic and nonenzymatic factors. The trace elements Cu, Zn, and Mn are critical components for a number of these processes, and a deficiency of any one of these elements can result in an impairment of the functioning of the overall antioxidant system. This impairment can be physiologically significant, particularly if the animal is exposed to environmental challenges that increase the production of oxygen radicals over normal physiological levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. G. D. Allen, J. R. Arthur, P. C. Morrice, F. Nicol, and C. F. Mills. Copper deficiency and tissue glutathione concentration in the rat.Proc. Soc. Exp. Biol. Med.18738–43 (1988).

    PubMed  CAS  Google Scholar 

  2. F. Archibald and I. Fridovich. The scavenging of superoxide radical by manganous complexes in vitro. Arch. Biochem. Biophys.214452–463 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. P. S. Balevska, E. M. Russanov, and T. A. Kassabova. Studies on lipid peroxidation in rat liver by copper deficiency.Int. J. Biochem.13489–493 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. G. M. Baroli, B. Giannattasio, P. Palozza, and A. Cittadini. Superoxide dismutase depletion and lipid peroxidation in rat liver microsomal membranes.Biochim. Biophys. Acta 966214–221 (1988).

    Article  Google Scholar 

  5. L. T. Bell and L. S. Hurley. Ultrastructural effects of manganese deficiency in liver, heart, kidney, and pancreas of mice.Lab. Invest.29, 723–736 (1973).

    CAS  Google Scholar 

  6. W. J. Bettger, T. J. Fish, and B. L. O’Dell. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity.Proc. Soc. Exp. Biol. Med.158279–282 (1978).

    PubMed  CAS  Google Scholar 

  7. W. J. Bettger, J. E. Savage, and B. L. O’Dell. A critical physiological role of zinc in the structure and function of biomembranes.Life Sci.281425–1438 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. T. M. Bray, S. Kubow, and W. J. Bettger. Effect of dietary zinc on endogenous free radical production in rat lung microsomes.J. Nutr.1161054–1060 (1986).

    PubMed  CAS  Google Scholar 

  9. J. P. Burke and M. R. Fenton. Effect of zinc-deficient diet on lipid peroxidation in liver and tumor subcellular membranes.Proc. Soc. Exp. Biol. Med.179187–191 (1985).

    PubMed  CAS  Google Scholar 

  10. P. L. B. Cheton and F. S. Archibald. Manganese complexes and the generation and scavenging of hydroxyl radicals.Free Rad. Biol. Med.5325–333 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. K. Chung, N. Romero, D. Tinker, C. L. Keen, K. Amemiya, and R. B. Rucker. Role of copper in the regulation and accumulation of superoxide dismutase and metallothionein in rat liver.J. Nutr.118859–864 (1988).

    PubMed  CAS  Google Scholar 

  12. M. Chvapil, J. N. Ryan, S. L. Elias, and Y. M. Peng. Protective effect of zinc on carbon tetrachloride-induced injury in rats.Exp. Mol. Pathol.19186–196 (1973).

    Article  PubMed  CAS  Google Scholar 

  13. M. Chvapil and C. F. Zukowski. New concept on the mechanism(s) on the biological effect of zinc. InClinical Applications of Zinc MetabolismW. J. Pones, W. H. Strain, J. M. Hsu, and R. L. Woosley, eds., C. Thomas, Springfield, IL, 1974, pp. 75–86.

    Google Scholar 

  14. M. S. Clegg, C. L. Keen, and L. S. Hurley. Biochemical pathologies of zinc deficiency. InZinc in Human BiologyC. F. Mills, ed., Springer-Verlag, New York, 1988, pp. 129–145.

    Google Scholar 

  15. D. D. Darr, S. Yanni, and S. R. Pinnell. Protection of chinese hamster ovary cells from paraquat-mediated cytotoxicity by a low molecular weight mimic of superoxide dismutase (DF-Mn).Free Rad. Biol. Med.4357–363 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. G. K. Davis. Microelement interactions of zinc, copper, and iron in mammalian species.Ann. N. Y. Acad. Sci.355, 98–108 (1980).

    Article  Google Scholar 

  17. G. K. Davis and W. Mertz. Copper. InTrace Elements in Human and Animal Nutritionvol. 1, W. Mertz, ed., Academic, London, 1987, pp. 301–364.

    Google Scholar 

  18. G. deRosa, C. L. Keen, R. M. Leach, L. S. Hurley. Regulation of superoxide dismutase by dietary manganese.J. Nutr.110795–804 (1980).

    PubMed  Google Scholar 

  19. I. E. Dreosti and I. R. Record. Superoxide dismutase, zinc status, and ethanol consumption in maternal and fetal rat livers.Br. J. Nutr.41399–402 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. E. I. Dreosti, I. R. Record, R. A. Buckley, S. J. Manuel, and F. J. Fraser. Ethanol and hepatic superoxide dismutase in rats. InTrace Element Metabolism in Man and Animals (TEMA-4)J. McC. Howell, J. M. Gawthorne, C. L. White, eds., Griffin Press, Netley, South Australia, 1984, pp. 617–620.

    Google Scholar 

  21. I. E. Dreosti I. R. Record, and S. J. Manuel. Zinc deficiency and the developing embryo.Biol. Trace Element Res.7, 103–122 (1985).

    Article  CAS  Google Scholar 

  22. M. A. Dubick, S. Zidenberg-Cherr, R. Rucker, and C. L. Keen. Superoxide dismutase activity in lung from copper-and manganese-deficient mice exposed to ozone.Toxicol. Lett.42149–157 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. M. Fields, R. J. Ferretti, J. C. Smith, and S. Reiser. Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues.Biol. Trace Element Res.6379–391 (1984).

    Article  CAS  Google Scholar 

  24. K. L. Fong, P. B. McCay, J. L. Poyer, B. B. Keele, and H. Misra. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during enzyme activity.J. Biol. Chem.2487792–7797 (1973).

    PubMed  CAS  Google Scholar 

  25. I. Fridovich. Superoxide dismutases.Ann. Rev. Biochem.44147–159 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. I. M. Goldstein, H. B. Kaplan, H. S. Edelson, and G. Weissman. Ceruloplasmin: a scavenger of superoxide anion radicals.J. Biol. Chem.254, 4040–4045 (1979).

    PubMed  CAS  Google Scholar 

  27. J. Harata, M. Nagata, E. Sasaki, I. Iishiguro, Y. Ohta, and Y. Marakami. Effect of prolonged alcohol administration on activities of various enzymes scavenging activated oxygen radicals and lipid peroxide levels in the liver of rats.Biochem. Pharmacol.32, 1795–1798 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. A. J. Harding, I. E. Dreosti, and R. S. Tulsi. Zinc deficiency in the 11th day rat embryo: a scanning and transmission electron microscope study.Life Sci.42889–896 (1987).

    Article  Google Scholar 

  29. K. E. Hill and R. F. Burk. Effect of selenium deficiency on the disposition of plasma glutathione.Arch. Biochem. Biophys.240166–171 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Hsu, W. L. Anthony, and P. J. Buchanan. Incorporation of glycine-1–14C into liver glutathione in zinc deficient rats.Proc. Soc. Exp. Biol. Med.1271048–1051 (1968).

    PubMed  CAS  Google Scholar 

  31. S. K. Jain and D. M. Williams. Copper deficiency anemia: altered blood cell lipids and viscosity in rats.Am. J. Clin. Nutr.48637–64 (1988).

    PubMed  CAS  Google Scholar 

  32. M. Jay, S. M. Stuart, C. J. McClain, D. A. Palmieri, and D. A. Butterfield. Alterations in lipid membrane fluidity and the physical state of cell-surface sialic acid in zinc-deficient rat erythrocyte ghosts.Biochim. Biophys. Acta 897507–511 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. S. G. Jenkinson, R. A. Lawrence, R. F. Burk, and D. M. Williams. Effects of copper deficiency on the activity of the selenoenzyme glutathione peroxidase, and one excretion and tissue retention of755eO3.J. Nutr.112197–204 (1982).

    PubMed  CAS  Google Scholar 

  34. C. L. Keen, T. Tamura, B. Lonnerdal, L. S. Hurley, and C. H. Halsted. Changes in hepatic superoxide dismutase activity in alcoholic monkeys.Am. J. Clin. Nutr.41929–932 (1985).

    PubMed  CAS  Google Scholar 

  35. C. L. Keen and L. S. Hurley. Zinc and reproduction: effects of deficiency on fetal and postnatal development. InZinc in Human BiologyC. F. Mills, ed., Springer-Verlag, New York, 1988, pp. 183–220.

    Google Scholar 

  36. C. L. Keen and T. W. Graham. Trace elements. InClinical Biochemistry of Domestic Animals4th Ed., J. J. Kaneko, ed., Academic, New York, 1989, pp. 753–795.

    Google Scholar 

  37. R. A. Lawrence and S. G. Jenkinson. Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation.J. Lab. Clin. Med.109134–140 (1987).

    PubMed  CAS  Google Scholar 

  38. S. H. Oh, J. T. Deagen, P. D. Whanger, and P. H. Weswig. Biological function of metallothionein. V. Its induction in rats by various stresses. Am.J. Physiol.234E282–E285 (1978).

    CAS  Google Scholar 

  39. D. I. Paynter. The role of dietary copper, manganese, selenium, and vitamin E in lipid peroxidation in tissues of the rat.Biol. Trace Element Res.2121–135 (1980).

    Article  CAS  Google Scholar 

  40. J. R. Prohaska and D. E. Gutsch. Development of glutathione peroxidase activity during dietary and genetic copper deficiency.Biol. Trace Element Res.535–45 (1983).

    Article  CAS  Google Scholar 

  41. N. Shiraishi, K. Aono, and K. Utsumi. Increased metallothionein content in rat liver induced by x irradiation and exposure to high oxygen tension.Radiat. Res.95298–302 (1983).

    Article  PubMed  CAS  Google Scholar 

  42. T. H. Spence, S. G. Jenkinson, K. H. Johnson, F. J. Collins and R. A. Lawrence. Effects of bacterial endotoxin on protecting copper-deficient rats from hyperoxia.J. Appl. Physiol.61982–987 (1986).

    PubMed  CAS  Google Scholar 

  43. J. B. Stevens and A. P. Autor. Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia.Fed. Proc.393138–3143 (1980).

    PubMed  CAS  Google Scholar 

  44. J. F. Sullivan, M. M. letton, K. J. Hahn and R. E. Burch. Enhanced lipid peroxidation in liver microsomes of zinc-deficient rats.Am. J. Clin. Nutr.3351–56 (1980).

    PubMed  CAS  Google Scholar 

  45. O. G. Taylor, W. J. Bettger, and T. M. Bray. Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats.J. Nutr.118613–621 (1988).

    PubMed  CAS  Google Scholar 

  46. P. J. Thornalley and M. Vasak. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals.Biochim. Biophys. Acta 82736–44 (1985).

    Article  PubMed  CAS  Google Scholar 

  47. J. P. Thomas, G. J. Bachowski, and A. W. Girotti. Inhibition of cell membrane lipid peroxidation by cadmium-and zinc-metallothioneins.Biochim. Biophys. Acta 884448–461 (1986).

    Article  PubMed  CAS  Google Scholar 

  48. F. Ursini and A. Bindoli. The role of selenium peroxidases in the protection against oxidative damage of membranes.Chemistry and Physics of Lipids 44255–276 (1987).

    Article  PubMed  CAS  Google Scholar 

  49. P. D. Van Helden and I. J. F. Wiid. Effects of adriamycin on heart and skeletal muscle chromatin.Biochem. Pharmacol.31973–977 (1982).

    Article  PubMed  Google Scholar 

  50. S. Zidenberg-Cherr, C. L. Keen, B. Lonnerdal, and L. S. Hurley. Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency.J. Nutr.1132498–2504 (1983).

    PubMed  CAS  Google Scholar 

  51. S. Zidenberg-Cherr, L. S. Hurley, B. Lonnerdal, and C. L. Keen. Manganese deficiency: effects on susceptibility to ethanol in rats.J. Nutr.115460–467 (1985).

    PubMed  CAS  Google Scholar 

  52. S. Zidenberg-Cherr, C. L. Keen, and L. S. Hurley. The effects of manganese deficiency during prenatal and postnatal development on mitochondrial structure and function in the rat.Biol. Trace Element Res.7, 31–48 (1985).

    Article  CAS  Google Scholar 

  53. S. Zidenberg-Cherr and C. L. Keen. Influence of dietary manganese and vitamin E on adriamycin toxicity in mice.Toxicol. Lett.30, 79–87 (1986).

    CAS  Google Scholar 

  54. S. Zidenberg-Cherr and C. L. Keen. Enhanced tissue lipid peroxidation. Mechanism underlying pathologies associated with dietary manganese deficiency. InNutritional Bioavailability of ManganeseC. Kies, ed., American Chemical Society, Washington, DC, 1987, pp. 56–66.

    Chapter  Google Scholar 

  55. S. Zidenberg-Cherr, P. A. Benak, L. S. Hurley, and C. L. Keen. Altered mineral metabolism: a mechanism underlying the fetal alcohol syndrome in rats.Drug-Nutrient Interact.5, 257–274 (1988).

    CAS  Google Scholar 

  56. S. Zidenberg-Cherr, D. Dreith and C. L. Keen. Copper status and adriamycin treatment effects on antioxidant status in mice.Toxicol. Lett.48, 201–212 (1989).

    Article  PubMed  CAS  Google Scholar 

  57. S. Zidenberg-Cherr, C. H. Halsted, K. L. Olin, A. M. Reisenauer, and C. L. Keen. The effect of chronic alcohol ingestion on free radical defense in the miniature pig.J. Nutr.120, 213–217 (1990).

    PubMed  CAS  Google Scholar 

  58. S. Zidenberg-Cherr, K. L. Olin, J. Villanueva, A. Tang, S. D. Phinney, C. H. Halsted, and C.L.Keen. Ethanol-induced changes in hepatic free radical defense mechanisms and fatty acid composition in the miniature pig. Hepatology. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zidenberg-Cherr, S., Keen, C.L. (1991). Essential Trace Elements in Antioxidant Processes. In: Dreosti, I.E. (eds) Trace Elements, Micronutrients, and Free Radicals. Contemporary Issues in Biomedicine, Ethics, and Society. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0419-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0419-0_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6754-6

  • Online ISBN: 978-1-4612-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics