Skip to main content

Some Generalized Martingales Arising from the Strong Law of Large Numbers

  • Conference paper
Probability in Banach Spaces, 9

Part of the book series: Progress in Probability ((PRPR,volume 35))

  • 610 Accesses

Abstract

Let (X k) be a sequence of independent random variables, defined on a probability space (Ω,.F, P) and taking their values in a real, separable, Banach space (B, || ||) (that Banach space being equipped with its Borel σ — field B ). To that sequence (X k) one associates the partial sums : S n = X 1 + … + X n and the σ- fields F n generated by X 1,…, X n. One says that (X k) satisfies the weak law of large numbers (WLLN) if ( ||S n/n|| ) converges to 0 in probability; the strong law of large numbers (SLLN) holds for (X k) if (||S n/n||) converges a.s. to 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chacon (R.V.), Sucheston (L.). — On convergence of vector-valued asymptotic martingales, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, t. 33, 1975, p. 55–59.

    MathSciNet  MATH  Google Scholar 

  2. Dam (B.K.). — On the strong law of large numbers for amarts, Eötvös Sect. Math., t. 33, 1990, p. 139–142.

    MathSciNet  MATH  Google Scholar 

  3. Edgar (G.A.), Sucheston (L.). — Amarts. A class of asymptotic martingales. A. Discrete parameter, Journal of Multivariate Analysis, t. 6, 1976, p. 193–221.

    Article  MathSciNet  MATH  Google Scholar 

  4. Edgar (G.A.), Sucheston (L.). — Stopping times and directed processes. — Cambridge, Cambridge University Press, 1992.

    Book  MATH  Google Scholar 

  5. Egghe (L.). — Stopping time techniques for analysts and probabilists. — Cambridge, Cambridge University Press, 1984.

    Book  MATH  Google Scholar 

  6. Fuk (D. Kh.), Nav (S.V.). — Probability inequalities for sums of independent random variables, Theor. Probab. Appl., t. 16, 1971, p. 643–660.

    Article  MATH  Google Scholar 

  7. Godbole, (A.P.). — Strong laws of large numbers and laws of the iterated logarithm in Banach spaces, Ph. D. Thesis of the Michigan State University, 1984.

    Google Scholar 

  8. Gut (A.), Schmidt (K.D.). — Amarts and Set Function Processes, Lecture Notes in Math. 1042, Berlin, Springer, 1983.

    MATH  Google Scholar 

  9. Heinkel (B.). — A law of large numbers for random vectors having large norms, Probability in Banach spaces 7, Oberwolfach 1988, p. 105–125, Progress in Probability 21, Boston, Birkhäuser, 1990.

    Google Scholar 

  10. Heinkel (B.). — On the Kolmogorov quasimartingale property, preprint, 1992.

    Google Scholar 

  11. Heinkel (B.). — A probabilistic property of the space ℓ 2 m, preprint, 1992.

    Google Scholar 

  12. Heinkel (B.). — When is \(\frac{ s_n p}{n p}\) an amart?, in preparation, 1993.

    Google Scholar 

  13. Hoffmann-Jørgensen (J.). — Sums of independent Banach space valued random variables, Studia Math., t. 52, 1974, p. 159–186.

    Google Scholar 

  14. Hoffmann-Jørgensen (J.), Pisier (G.). — The law of large numbers and the central limit theorem in Banach spaces, Ann. Probab., t. 4, 1976, p. 587–599.

    Article  Google Scholar 

  15. Kolmogorov (A.). — Sur la loi forte des grands nombres, C.R. Acad. Sci. Paris, t. 191, 1930, p. 910–912.

    Google Scholar 

  16. Krengel (U.), Sucheston (L.). — Semiamarts and finite values, Bull. Amer. Math. Soc, t. 83, 1977, p. 745–747.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuelbs (J.), Zinn (J.). — Some stability results for vector valued random variables, Ann. Probab., t. 7, 1979, p. 75–84.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ledoux (M.), Talagrand (M.). — Probability in Banach spaces. — Berlin, Springer, 1991.

    MATH  Google Scholar 

  19. Peligrad (M.). — Local convergence for sums of dependent random variables and the law of large numbers, Revue Roumaine de Mathematiques Pures et Appliquées, t. 25, 1980, p. 89–98.

    MathSciNet  MATH  Google Scholar 

  20. Petrov (V.V.). — Sums of independent random variables. — Berlin, Springer, 1975.

    Book  Google Scholar 

  21. Rao (M.M.). — Foundations of stochastic analysis. — New York, Academic Press, 1981.

    MATH  Google Scholar 

  22. Talagrand (M.). — Some structure results for martingales in the limit and pramarts, Ann. Probab., t. 13, 1985, p. 1192–1203.

    Article  MathSciNet  MATH  Google Scholar 

  23. Woyczynski (W.A.). — Geometry and martingales in Banach spaces, Probability Winter School, Proceedings Karpacz 1975, p. 229–275, Lecture Notes in Math. 472, Berlin, Springer, 1975.

    Google Scholar 

  24. Woyczynski (W.A.). — Asymptotic behavior of martingales in Banach spaces II, Martingale Theory in harmonic analysis and Banach spaces, Proceedings Cleveland 1981, p. 216–225, Lecture Notes in Math. 939, Berlin, Springer, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Heinkel, B. (1994). Some Generalized Martingales Arising from the Strong Law of Large Numbers. In: Hoffmann-Jørgensen, J., Kuelbs, J., Marcus, M.B. (eds) Probability in Banach Spaces, 9. Progress in Probability, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0253-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0253-0_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6682-2

  • Online ISBN: 978-1-4612-0253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics