Skip to main content

Gibbs Regression and a Test for Goodness-of-Fit

  • Chapter
Goodness-of-Fit Tests and Model Validity

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 1614 Accesses

Abstract

We explore a model for social networks that may be viewed either as an extension of logistic regression or as a Gibbs distribution on a complete graph. The model was developed for data from a mental health service system which includes a neighborhood structure on the clients in the system. This neighborhood structure is used to develop a Markov chain Monte Carlo goodness-of-fit test for the fitted model, with pleasing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion)Journal of Royal Statistical Society Series B, 36, 192–236.

    MathSciNet  MATH  Google Scholar 

  2. Besag, J. E. (1975). Statistical analysis of non-lattice dataThe Statistician, 24, 179–195.

    Article  Google Scholar 

  3. Cométs, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the latticeAnnals of Statistics, 20, 455–468.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cressie, N. (1993).Statistics for Spatial DataNew York: John Wiley&Sons.

    Google Scholar 

  5. Doreian, P. (1980). Linear models with spatially distributed data: spatial disturbances or spatial effectsSociological Methods Research, 9, 29–61.

    Article  Google Scholar 

  6. Doreian, P. (1982). Maximum likelihood methods for linear models: spatial effect and spatial disturbance termsSociological Methods e.4 Research, 10, 243–269.

    Article  Google Scholar 

  7. Doreian, P. (1989). Network autocorrelation models: problems and prospects. Paper presented at 1989 Symposium“Spatial Statistics: Past Present Future”Department of Geography, Syracuse University.

    Google Scholar 

  8. Galaskiewicz, J. and Wasserman, S. (1993). Social network analysis: Concepts, methodology, and directions for the 1990sSociological Methods Research, 22, 3–22.

    Article  Google Scholar 

  9. Gibbs, J. W. (1902).Elementary Principles of Statistical MechanicsYale University Press.

    Google Scholar 

  10. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and Bayesian restoration of imagesIEEE Transactions on Pattern Analysis and Machine Intelligence,6, 721–741.

    Article  MATH  Google Scholar 

  11. Georgii, H. O. (1988).Gibbs Measures and Phase TransitionsBerlin: Walter de Gruyter.

    Book  MATH  Google Scholar 

  12. Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion)Journal of Royal Statistical Society Series B, 54, 657–699.

    MathSciNet  Google Scholar 

  13. Gould, R. (1991). Multiple networks and mobilization in the Paris Commune, 1871American Sociological Review, 56, 716–29.

    Article  Google Scholar 

  14. Ji, C. and Seymour, L. (1996). A consistent model selection procedure for Markov random fields based on penalized pseudolikelihoodAnnals of Applied Probability,6, 423–443.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lehman, A., Postrado, L., Roth, D., McNary, S., and Goldman, H. (1994). An evaluation of continuity of care, case management, and client outcomes in the Robert Wood Johnson Program on chronic mental illnessThe Milbank Quarterly, 72, 105–122.

    Article  Google Scholar 

  16. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of state calculations by fast computing machinesJournal of Chemical Physics, 21, 1087–1092.

    Article  Google Scholar 

  17. Morrissey, J. P., Calloway, M., Bartko, W. T., Ridgley, S., Goldman, H., and Paulson, R. I. (1994). Local mental health authorities and service system change: Evidence from the Robert Wood Johnson Foundation Program on Chronic Mental IllnessThe Milbank Quarterly, 72, 49–80.

    Article  Google Scholar 

  18. Nash, J. C. (1990).Compact Numerical Methods for Computers - Linear Algebra and Function Minimisation(2nd edition), Bristol: Adam Hilger.

    MATH  Google Scholar 

  19. Possolo, A. (1991). Subsampling a random field, InSpatial Statistics and Imaging(Ed., A. Possolo), Vol. 20, pp. 286–294, IMS Lecture Notes - Monograph Series.

    Google Scholar 

  20. Seymour, L. (2000). A note on the variance of the maximum pseudo-likelihood estimator, Submitted to Proceedings of the Symposium on Stochastic ProcessesAthens, Georgia.

    Google Scholar 

  21. Seymour, L. and Ji, C.(1996). Approximate Bayes model selection criteria for Gibbs-Markov random fieldsJournal of Statistical Planning and Inference, 51, 75–97.

    Article  MathSciNet  MATH  Google Scholar 

  22. Seymour, L., Smith, R., Calloway, M., and Morrissey, J. P. (2000).Lattice models for social networks with binary data, Technical Report 2000–24Department of Statistics, University of Georgia.

    Google Scholar 

  23. Strauss, D. and Ikeda, M. (1990). Pseudolikelihood estimation for social networks.Journal of the American Statistical Association, 85, 204–212.

    Article  MathSciNet  Google Scholar 

  24. Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social networks: L An introduction to Markov graphs andp* Psychometrika, 61, 401–425.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seymour, L. (2002). Gibbs Regression and a Test for Goodness-of-Fit. In: Huber-Carol, C., Balakrishnan, N., Nikulin, M.S., Mesbah, M. (eds) Goodness-of-Fit Tests and Model Validity. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0103-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0103-8_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6613-6

  • Online ISBN: 978-1-4612-0103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics