Skip to main content

Reliability of Electronic Packaging

  • Chapter
  • First Online:
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In the semiconductor industry, the study of reliability and the ability to predict temperature cycling fatigue life of electronic packaging are of significance. For that purpose, researchers and engineers frequently employ the finite element method (FEM) in their analyses. It is primarily a mechanics analysis tool that takes material properties, manufacturing processes, and environmental factors into consideration. Engineers also like to use FEM in their design of electronic package, but frequently the term ``reliabilityā€¯ they refer to only addresses the robustness of a particular design. It has little to do with probability and statistics. Meanwhile, in manufacturing factories of electronic products, including packaging, accelerated life testing (ALT) is carried out very often by quality engineers to find lives of a product in more severe environmental conditions than those of the field condition. Through regression analysis of the test result based on an empirical or semiempirical formula, the acceleration factor (AF) can be obtained for use in predicting service life of the product in field condition. Again, other than regression analysis, little probability and statistics are involved. By taking parameter uncertainties into consideration, this chapter demonstrates by an example that FEM, ALT, and AF can be combined to study the reliability of electronic packaging in which probability and statistics are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lau, J.H.: Recent advances and trends in fan-out wafer/panel-level packaging. ASME J. Electron. Packag. 141(4), 040801 (2019)

    ArticleĀ  Google ScholarĀ 

  2. Lau, J.H.: Recent advances and new trends in flip chip technology. ASME J. Electron. Packag. 138(3), 1--23 (2016)

    ArticleĀ  Google ScholarĀ 

  3. Lau, J.H.: Fan-Out Wafer-Level Packaging. Springer, Singapore (2018)

    BookĀ  Google ScholarĀ 

  4. Lau, J.H.: 3D IC Integration and Packaging. McGraw-Hill Book Company, New York (2016)

    Google ScholarĀ 

  5. Viswanadham, P.: Essentials of Electronic Packaging: A Multidisciplinary Approach, Electronic Packaging Book Series. ASME, New York (2011)

    BookĀ  Google ScholarĀ 

  6. Broughton, J., Smet, V., Tummala, R.R., Joshi, Y.K.: Review of thermal packaging technologies for automotive power electronics for traction purposes. ASME J. Electron. Packag. 140(4), 040801 (2018)

    ArticleĀ  Google ScholarĀ 

  7. Shen, Y., Zhang, L., Zhu, W., Zhou, J., Fan, X.: Finite-element analysis and experimental test for a capped-die flip chip package design. IEEE Trans. Compon. Packag. Manuf. Technol. 6(9), 1308--1316 (2016)

    ArticleĀ  Google ScholarĀ 

  8. Shao, J., Zhang, H., Chen, B.: Experimental study on the reliability of PBGA electronic packaging under shock loading. Electronics. 8(3), 279 (2019)

    ArticleĀ  Google ScholarĀ 

  9. Zulkifli, M.N., Jamal, Z.A.Z., Quadir, G.A.: Temperature cycling analysis for ball grid array package using finite element analysis. Microelectron. Int. 28(1), 17--28 (2011)

    ArticleĀ  Google ScholarĀ 

  10. Jagarkal, S.G., Hossain, M.M., Agonafer, D., Lulu, M., Reh, S.: Design optimization and reliability of PWB level electronic package. In: IEEE Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 2, pp. 368--376 (2004)

    Google ScholarĀ 

  11. Coffin Jr., L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME. 76, 931--950 (1954)

    Google ScholarĀ 

  12. Manson, S.S.: Thermal Stress and Low-Cycle Fatigue. McGraw-Hill, New York (1966)

    BookĀ  Google ScholarĀ 

  13. Norris, K.C., Landzberg, A.H.: Reliability of controlled collapse interconnections. IBM J. Res. Dev. 13(3), 266--271 (1969)

    ArticleĀ  Google ScholarĀ 

  14. Che, F.X., Pang, J.H., Xiong, B.S., Xu, L., Low, T.H.: Lead free solder joint reliability characterization for PBGA, PQFP and TSSOP assemblies. In: Proceedings of IEEE 55th Electronic Components and Technology Conference, pp. 916--921 (2005)

    Google ScholarĀ 

  15. Su, C.Y.: Probabilistic design and reliability analysis of flip-chip chip scale packages under accelerated environmental conditions. Ph.D. Dissertation, National Taiwan University, Taipei (2012)

    Google ScholarĀ 

  16. Chou, P.L.: Investigation of fatigue life of wafer-level chip-scale packages under thermal cycling conditions by acceleration models. M.S. Thesis, National Taiwan University, Taipei (2012)

    Google ScholarĀ 

  17. JEDEC Solid State Technology Association: JESD22-A104C: Temperature Cycling (2005)

    Google ScholarĀ 

  18. Darveaux, R., Turlik, I., Hwang, L.T., Reisman, A.: Thermal stress analysis of a multichip package design. IEEE Trans. Compon. Hybrids Manuf. Technol. 12(4), 663--672 (1989)

    ArticleĀ  Google ScholarĀ 

  19. Kim, D.H., Elenius, P., Barrett, S.: Solder joint reliability and characteristics of deformation and crack growth of Sn-Ag-Cu versus eutectic Sn-Pb on a WLP in a thermal cycling test. IEEE Trans. Electron. Packag. Manuf. 25(2), 84--90 (2002)

    ArticleĀ  Google ScholarĀ 

  20. Meilunas, M., Primavera, A., Dunford, S.O.: Reliability and failure analysis of lead-free solder joints. In: Proceedings of the IPC Annual Meeting (2002)

    Google ScholarĀ 

  21. Syed, A.: Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints. Proceedings of IEEE 54th. Electronic Components and Technology Conference, Vol. 1, pp. 737--746 (2004)

    Google ScholarĀ 

  22. Pang, J.H.L.: Lead Free Solder: Mechanics and Reliability. Springer, New York (2011)

    Google ScholarĀ 

  23. Lai, Y.S., Wang, T.H.: Verification of submodeling technique in thermomechanical reliability assessment of flip-chip package assembly. Microelectron. Reliab. 45(3), 575--582 (2005)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. Pang, J.H.L., Low, T.H., Xiong, B.S., Che, F.X.: Design for reliability (DFR) methodology for electronic packaging assemblies. In: Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003), pp. 470--478 (2003)

    Google ScholarĀ 

  25. Lall, P., Shirgaokar, A., Arunachalam, D.: Norris--Landzberg acceleration factors and Goldmann constants for SAC305 lead-free electronics. ASME Journal of Electronic Packaging. 134(3), 031008 (2012)

    ArticleĀ  Google ScholarĀ 

  26. Pan, N., Henshall, G.A., Billaut, F., Dai, S., Strum, N.J., Lewis, R., Benedetto, E., Rayner, J.: An acceleration model for Sn-Ag-Cu solder joint reliability under various thermal cycle conditions. In: Proceedings of the SMTA International Conference, pp. 876--883 (2005)

    Google ScholarĀ 

  27. Salmela, O., Andersson, K., Sarkka, J., Tammenmaa, M.: Reliability analysis of some ceramic lead-free solder attachments. In: Proceedings of the SMTA Pan Pacific Conference, pp. 161--169 (2005)

    Google ScholarĀ 

  28. Zhang, R., Clech, J.P.: Applicability of various Pb-free solder joint acceleration factor models. In: Proceedings of the SMTA International Conference (2006)

    Google ScholarĀ 

  29. Dauksher, W.: A second-level SAC solder-joint fatigue-life prediction methodology. IEEE Trans. Device Mater. Reliab. 8(1), 168--173 (2008)

    ArticleĀ  Google ScholarĀ 

  30. Vasudevan, V., Fan, X.: An acceleration model for lead-free (SAC) solder joint reliability under thermal cycling. In: Proceedings of the 2008 Electronic Components and Technology Conference, IEEE, pp. 139--145 (2008)

    Google ScholarĀ 

  31. Jong, W.R., Chen, S.C., Tsai, H.C., Chiu, C.C., Chang, H.T.: The geometrical effects of bumps on the fatigue life of flip-chip packages by Taguchi method. J. Reinf. Plast. Compos. 25(1), 99--114 (2006)

    ArticleĀ  Google ScholarĀ 

  32. Mercado, L.L., Sarihan, V.: Predictive design of flip-chip PBGA for high reliability and low cost. In: Proceedings of the 2008 Electronic Components and Technology Conference, IEEE, pp. 1111--1115 (1999)

    Google ScholarĀ 

  33. Perkins, A., Sitaraman, S.K.: Universal fatigue life prediction equation for ceramic ball grid array (CBGA) packages. Microelectron. Reliab. 47(12), 2260--2274 (2007)

    ArticleĀ  Google ScholarĀ 

  34. Wu, M.L., Barker, D.: Rapid assessment of BGA life under vibration and bending, and influence of input parameter uncertainties. Microelectron. Reliab. 50(1), 140--148 (2010)

    ArticleĀ  Google ScholarĀ 

  35. Cheng, H.C., Yu, C.Y., Chen, W.H.: An effective thermal-mechanical modeling methodology for large-scale area array typed packages. Comput. Model. Eng. Sci. 7(1), 1--17 (2005)

    MATHĀ  Google ScholarĀ 

  36. Salmela, O.: Acceleration factors for lead-free solder materials. IEEE Trans. Compon. Packag. Technol. 30(4), 161--169 (2005)

    Google ScholarĀ 

  37. Wei, H.P., Yang, Y.H., Han, B.: Stacking yield prediction of package-on-package assembly using advanced uncertainty propagation analysis: part I stochastic model development. ASME J. Electron. Packag. 142(1), 011001 (2020)

    ArticleĀ  Google ScholarĀ 

  38. Wei, H.P., Yang, Y.H., Han, B.: Stacking yield prediction of package-on-package assembly using advanced uncertainty propagation analysis: part II implementation of stochastic model. ASME J. Electron. Packag. 142(1), 011002 (2020)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, WF., Lu, YA. (2023). Reliability of Electronic Packaging. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-4471-7503-2_50

Download citation

Publish with us

Policies and ethics