Skip to main content

Melanoma

  • Chapter
  • First Online:
Angiogenesis-Based Dermatology
  • 510 Accesses

Abstract

Tumor angiogenesis, the formation of new blood vessels, is a prerequisite occurrence in melanoma as in any tumor, but melanoma requires special attention due to its angiogenic and aggressive nature leading to rapid local growth and metastatic spread. Tumors need blood vessels to supply oxygen and nutrients for growth as well as a conduit for dissemination to distant sites. Therefore, tumor angiogenesis is necessary for both local growth and metastasis. Treatment strategies targeting this process are logical and alluring. As new therapeutic targets are being identified, new drugs being developed, and new combinatorial regimens are being tested, alternative approaches other than those directed at neoplastic cells and immune system such as targeting the angiogenesis program still remain on the spotlight. This chapter centers on tumor angiogenesis in melanoma, describes its basic pathogenesis, and summarizes treatment efforts targeting angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  5. Menzies AM, Long GV. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(8):2035–43.

    Article  CAS  Google Scholar 

  6. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.

    Article  PubMed  Google Scholar 

  7. Bucheit AD, Davies MA. Emerging insights into resistance to BRAF inhibitors in melanoma. Biochem Pharmacol. 2014;87(3):381–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  10. Naidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy. Br J Cancer. 2014;111(12):2214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 2013;123(8):3190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33.

    Article  CAS  PubMed  Google Scholar 

  14. Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, et al. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol. 2014;171(2):220–33.

    Article  CAS  PubMed  Google Scholar 

  15. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3(6):411–21.

    Article  CAS  PubMed  Google Scholar 

  16. Mittal K, Ebos J, Rini B. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol. 2014;41(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer. 2012;12(10):699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    Article  CAS  PubMed  Google Scholar 

  19. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corrie PG, Basu B, Zaki KA. Targeting angiogenesis in melanoma: prospects for the future. Ther Adv Med Oncol. 2010;2(6):367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J Off Publ Federation Am Soc Exp Biol. 1999;13(1):9–22.

    CAS  Google Scholar 

  22. Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther. 2014;14(5):621–39.

    Article  CAS  PubMed  Google Scholar 

  23. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gitay-Goren H, Halaban R, Neufeld G. Human melanoma cells but not normal melanocytes express vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 1993;190(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  25. Erhard H, Rietveld FJ, van Altena MC, Brocker EB, Ruiter DJ, de Waal RM. Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis. Melanoma Res. 1997;7(Suppl 2):S19–26.

    CAS  PubMed  Google Scholar 

  26. Salven P, Heikkila P, Joensuu H. Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Br J Cancer. 1997;76(7):930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chua R, Setzer S, Govindarajan B, Sexton D, Cohen C, Arbiser JL. Maspin expression, angiogenesis, prognostic parameters, and outcome in malignant melanoma. J Am Acad Dermatol. 2009;60(5):758–66.

    Article  PubMed  Google Scholar 

  28. Tas F, Duranyildiz D, Oguz H, Camlica H, Yasasever V, Topuz E. Circulating levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-3 (MMP-3), and BCL-2 in malignant melanoma. Med Oncol. 2008;25(4):431–6.

    Article  PubMed  Google Scholar 

  29. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent results in cancer research Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 2010;180:103–14.

    CAS  PubMed  Google Scholar 

  30. Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630–8.

    Article  CAS  PubMed  Google Scholar 

  31. Barnhill RL, Xiao M, Graves D, Antoniades HN. Expression of platelet-derived growth factor (PDGF)-A, PDGF-B and the PDGF-alpha receptor, but not the PDGF-beta receptor, in human malignant melanoma in vivo. Br J Dermatol. 1996;135(6):898–904.

    Article  CAS  PubMed  Google Scholar 

  32. Halaban R, Ghosh S, Baird A. bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev Biol J Tissue Culture Assoc. 1987;23(1):47–52.

    Article  CAS  Google Scholar 

  33. Metzner T, Bedeir A, Held G, Peter-Vorosmarty B, Ghassemi S, Heinzle C, et al. Fibroblast growth factor receptors as therapeutic targets in human melanoma: synergism with BRAF inhibition. J Investigative Dermatology. 2011;131(10):2087–95.

    Article  CAS  Google Scholar 

  34. Helfrich I, Edler L, Sucker A, Thomas M, Christian S, Schadendorf D, et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(4):1384–92.

    Article  CAS  Google Scholar 

  35. Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208.

    Article  CAS  PubMed  Google Scholar 

  36. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  37. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  38. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17(3):471–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400.

    Article  CAS  PubMed  Google Scholar 

  41. Spaide RF, Laud K, Fine HF, Klancnik Jr JM, Meyerle CB, Yannuzzi LA, et al. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2006;26(4):383–90.

    PubMed  Google Scholar 

  42. Kim KB, Sosman JA, Fruehauf JP, Linette GP, Markovic SN, McDermott DF, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(1):34–41.

    Article  CAS  Google Scholar 

  43. Amit L, Ben-Aharon I, Vidal L, Leibovici L, Stemmer S. The impact of Bevacizumab (Avastin) on survival in metastatic solid tumors – a meta-analysis and systematic review. PLoS One. 2013;8(1):e51780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013;73(10):2943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vihinen PP, Hernberg M, Vuoristo MS, Tyynela K, Laukka M, Lundin J, et al. A phase II trial of bevacizumab with dacarbazine and daily low-dose interferon-alpha2a as first line treatment in metastatic melanoma. Melanoma Res. 2010;20(4):318–25.

    Article  CAS  PubMed  Google Scholar 

  46. Grignol VP, Olencki T, Relekar K, Taylor C, Kibler A, Kefauver C, et al. A phase 2 trial of bevacizumab and high-dose interferon alpha 2B in metastatic melanoma. J Immunother. 2011;34(6):509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Del Vecchio M, Mortarini R, Canova S, Di Guardo L, Pimpinelli N, Sertoli MR, et al. Bevacizumab plus fotemustine as first-line treatment in metastatic melanoma patients: clinical activity and modulation of angiogenesis and lymphangiogenesis factors. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(23):5862–72.

    Article  CAS  Google Scholar 

  48. Slingluff Jr CL, Petroni GR, Molhoek KR, Brautigan DL, Chianese-Bullock KA, Shada AL, et al. Clinical activity and safety of combination therapy with temsirolimus and bevacizumab for advanced melanoma: a phase II trial (CTEP 7190/Mel47). Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(13):3611–20.

    Article  CAS  Google Scholar 

  49. von Moos R, Seifert B, Simcock M, Goldinger SM, Gillessen S, Ochsenbein A, et al. First-line temozolomide combined with bevacizumab in metastatic melanoma: a multicentre phase II trial (SAKK 50/07). Ann Oncol Off J Eur Soc Medical Oncol ESMO. 2012;23(2):531–6.

    Article  Google Scholar 

  50. Kottschade LA, Suman VJ, Perez DG, McWilliams RR, Kaur JS, Amatruda 3rd TT, et al. A randomized phase 2 study of temozolomide and bevacizumab or nab-paclitaxel, carboplatin, and bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N0775. Cancer. 2013;119(3):586–92.

    Article  CAS  PubMed  Google Scholar 

  51. Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res. 2001;23(2–3):263–72.

    Article  CAS  PubMed  Google Scholar 

  52. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998;160(3):1224–32.

    CAS  PubMed  Google Scholar 

  53. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73(2):539–49.

    Article  CAS  PubMed  Google Scholar 

  54. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Terme M, Colussi O, Marcheteau E, Tanchot C, Tartour E, Taieb J. Modulation of immunity by antiangiogenic molecules in cancer. Clin Dev Immunol. 2012;2012:492920.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2(7):632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14(10):933–42.

    Article  CAS  PubMed  Google Scholar 

  58. Corrie PG, Marshall A, Dunn JA, Middleton MR, Nathan PD, Gore M, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 2014;15(6):620–30.

    Article  CAS  PubMed  Google Scholar 

  59. Wu J, Brunner G, Celebi JT. A melanoma subtype: uveal melanoma. J Am Acad Dermatol. 2011;64(6):1185–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. LoConte NK, Thomas JP, Alberti D, Heideman J, Binger K, Marnocha R, et al. A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer. Cancer Chemother Pharmacol. 2008;63(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  61. el Filali M, Ly LV, Luyten GP, Versluis M, Grossniklaus HE, van der Velden PA, et al. Bevacizumab and intraocular tumors: an intriguing paradox. Mol Vis. 2012;18:2454–67.

    PubMed  PubMed Central  Google Scholar 

  62. el Filali M, van der Velden PA, Luyten GP, Jager MJ. Anti-angiogenic therapy in uveal melanoma. Dev Ophthalmol. 2012;49:117–36.

    Article  PubMed  Google Scholar 

  63. Tarhini AA, Frankel P, Margolin KA, Christensen S, Ruel C, Shipe-Spotloe J, et al. Aflibercept (VEGF Trap) in inoperable stage III or stage iv melanoma of cutaneous or uveal origin. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(20):6574–81.

    Article  CAS  Google Scholar 

  64. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  65. Ahmad T, Eisen T. Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(18 Pt 2):6388S–92S.

    Article  CAS  Google Scholar 

  66. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    Article  CAS  PubMed  Google Scholar 

  67. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(1):25–35.

    Article  CAS  Google Scholar 

  68. Ishak RS, Aad SA, Kyei A, Farhat FS. Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors. Crit Rev Oncol Hematol. 2014;90(2):152–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Julide Celebi is funded by the National Institutes of Health/National Cancer Institute (CA138678, CA158557, CA177940), the Melanoma Research Foundation, and a Pilot Program Project from the Icahn School of Medicine at Mount Sinai. We apologize to authors whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julide Tok Celebi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Celebi, J.T. (2017). Melanoma. In: Arbiser, J. (eds) Angiogenesis-Based Dermatology. Springer, London. https://doi.org/10.1007/978-1-4471-7314-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7314-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7312-0

  • Online ISBN: 978-1-4471-7314-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics