Skip to main content

Infantile Hemangioma: New Insights on Pathogenesis and Beta Blockers Mechanisms of Action

  • Chapter
  • First Online:
Angiogenesis-Based Dermatology

Abstract

Infantile hemangioma (IH) is a common, benign vascular tumor of infancy. The tumor displays a unique life cycle consisting of a proliferating phase, occurring in the first months of life, followed by an involution phase that lasts several years. Thus, IH represents a model of post-natal vasculogenesis/angiogenesis and vessel regression. In recent years, beta-blockers, have been shown to be effective treatment for IH and replaced the corticosteroids as first line treatment of complicated lesions. The mechanisms underlying their effect have not been fully elucidated. However, significant advances have been achieved. This review will focus on the pathogenesis of IH and on the mechanism of action of the beta-blockers treatments, including their effects on vascular tone, angiogenesis and vasculogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Newell B, et al. Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr. 2007;150(3):291–4.

    Article  PubMed  Google Scholar 

  2. Amir J, Metzker A, Krikler R, Reisner SH. Strawberry hemangioma in preterm infants. Pediatr Dermatol. 1986;3(4):331–2.

    Article  CAS  PubMed  Google Scholar 

  3. Enjolras O, Mulliken JB. The current management of vascular birthmarks. Pediatr Dermatol. 1993;10(4):311–3.

    Article  CAS  PubMed  Google Scholar 

  4. Frieden IJ, Haggstrom AN, Drolet BA, Mancini AJ, Friedlander SF, Boon L, Chamlin SL, Baselga E, Garzon MC, Nopper AJ, et al. Infantile hemangiomas: current knowledge, future directions. Proceedings of a research workshop on infantile hemangiomas, April 7-9, 2005, Bethesda, Maryland, USA. Pediatric dermatology. 2005;22(5):383–406.

    Article  PubMed  Google Scholar 

  5. Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, et al. Growth characteristics of infantile hemangiomas: implications for management. Pediatrics. 2008;122(2):360–7.

    Article  PubMed  Google Scholar 

  6. Bruckner AL, Frieden IJ. Hemangiomas of infancy. J Am Acad Dermatol. 2003;48(4):477–93; quiz 494–6.

    Google Scholar 

  7. Drolet BA, Esterly NB, Frieden IJ. Hemangiomas in children. N Engl J Med. 1999;341(3):173–81.

    Article  CAS  PubMed  Google Scholar 

  8. Dosanjh A, Chang J, Bresnick S, Zhou L, Reinisch J, Longaker M, Karasek M. In vitro characteristics of neonatal hemangioma endothelial cells: similarities and differences between normal neonatal and fetal endothelial cells. J Cutan Pathol. 2000;27(9):441–50.

    Article  CAS  PubMed  Google Scholar 

  9. Razon MJ, Kraling BM, Mulliken JB, Bischoff J. Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation. 1998;5(2-3):189–95.

    Article  CAS  PubMed  Google Scholar 

  10. Iwata J, Sonobe H, Furihata M, Ido E, Ohtsuki Y. High frequency of apoptosis in infantile capillary haemangioma. J Pathol. 1996;179(4):403–8.

    Article  CAS  PubMed  Google Scholar 

  11. North PE, Waner M, Mizeracki A, Mrak RE, Nicholas R, Kincannon J, Suen JY, Mihm Jr MC. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol. 2001;137(5):559–70.

    CAS  PubMed  Google Scholar 

  12. Barnes CM, Huang S, Kaipainen A, Sanoudou D, Chen EJ, Eichler GS, Guo Y, Yu Y, Ingber DE, Mulliken JB, et al. Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci U S A. 2005;102(52):19097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich HP, Fishman SJ, Larsen PR. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343(3):185–9.

    Article  CAS  PubMed  Google Scholar 

  14. Alfirevic Z, Sundberg K, Brigham S. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev. 2003(3):CD003252.

    Google Scholar 

  15. Bauland CG, Smit JM, Bartelink LR, Zondervan HA, Spauwen PH. Hemangioma in the newborn: increased incidence after chorionic villus sampling. Prenat Diagn. 2010;30(10):913–7.

    Article  PubMed  Google Scholar 

  16. Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008;118(7):2592–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boscolo E, Stewart CL, Greenberger S, Wu JK, Durham JT, Herman IM, Mulliken JB, Kitajewski J, Bischoff J. JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol. 2011;31(10):2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu D, TM O, Shartava A, Fowles TC, Yang J, Fink LM, Ward DC, Mihm MC, Waner M, Ma Y. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol. 2011;4:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itinteang T, Brasch HD, Tan ST, Day DJ. Expression of components of the renin-angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. J Plastic Recons Aesthetic Surg JPRAS. 2011;64(6):759–65.

    Article  Google Scholar 

  20. Spock CL, Tom LK, Canadas K, Sue GR, Sawh-Martinez R, Maier CL, Pober JS, Galan A, Schultz B, Waner M, et al. Infantile hemangiomas exhibit neural crest and pericyte markers. Ann Plast Surg. 2015;74(2):230–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hopel-Kreiner I. Histogenesis of hemangiomas – an ultrastructural study on capillary and cavernous hemangiomas of the skin. Pathol Res Pract. 1980;170:70.

    Article  Google Scholar 

  22. Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest. 2001;107(6):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greenberger S, Bischoff J. Pathogenesis of infantile haemangioma. Br J Dermatol. 2013;169(1):12–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. North PE, Waner M, Mizeracki A, Mihm Jr MC. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 2000;31(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  25. Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J. Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol. 2001;159(6):2271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Y, Flint AF, Mulliken JB, Wu JK, Bischoff J. Endothelial progenitor cells in infantile hemangioma. Blood. 2004;103(4):1373–5.

    Article  CAS  PubMed  Google Scholar 

  27. Wang FQ, Chen G, Zhu JY, Zhang W, Ren JG, Liu H, Sun ZJ, Jia J, Zhao YF. M2-polarised macrophages in infantile haemangiomas: correlation with promoted angiogenesis. J Clin Pathol. 2013;66(12):1058–64.

    Article  PubMed  Google Scholar 

  28. Ritter MR, Reinisch J, Friedlander SF, Friedlander M. Myeloid cells in infantile hemangioma. Am J Pathol. 2006;168(2):621–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mills CD. M1 and M2 Macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Chen G, Wang FQ, Ren JG, Zhu JY, Cai Y, Zhao JH, Jia J, Zhao YF. Macrophages contribute to the progression of infantile hemangioma by regulating the proliferation and differentiation of hemangioma stem cells. J Invest Dermatol. 2015;135(12):3163–72.

    Article  CAS  PubMed  Google Scholar 

  31. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    Article  CAS  PubMed  Google Scholar 

  32. Crisan M, Corselli M, Chen WC, Peault B. Perivascular cells for regenerative medicine. J Cell Mol Med. 2012;16(12):2851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Inter J Devel Biol. 2011;55(3):261–8.

    Article  CAS  Google Scholar 

  34. van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C. The complex mural cell: pericyte function in health and disease. Int J Cardiol. 2015;190:75–89.

    Article  PubMed  Google Scholar 

  35. Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. 2009;77(3):235–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boscolo E, Mulliken JB, Bischoff J. Pericytes from infantile hemangioma display proangiogenic properties and dysregulated angiopoietin-1. Arterioscler Thromb Vasc Biol. 2013;33(3):501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med. 2010;362(11):1005–13. doi: 10.1056/NEJMoa0903036. PMID: 20237346. Free PMC Article.

  38. Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358(24):2649–51.

    Article  CAS  PubMed  Google Scholar 

  39. Price CJ, Lattouf C, Baum B, McLeod M, Schachner LA, Duarte AM, Connelly EA. Propranolol vs corticosteroids for infantile hemangiomas: a multicenter retrospective analysis. Arch Dermatol. 2011;147(12):1371–6.

    Article  CAS  PubMed  Google Scholar 

  40. Sans V, de la Roque ED, Berge J, Grenier N, Boralevi F, Mazereeuw-Hautier J, Lipsker D, Dupuis E, Ezzedine K, Vergnes P, et al. Propranolol for severe infantile hemangiomas: follow-up report. Pediatrics. 2009;124(3):e423–31.

    Article  PubMed  Google Scholar 

  41. Leaute-Labreze C, Hoeger P, Mazereeuw-Hautier J, Guibaud L, Baselga E, Posiunas G, Phillips RJ, Caceres H, Lopez Gutierrez JC, Ballona R, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med. 2015;372(8):735–46.

    Article  CAS  PubMed  Google Scholar 

  42. Hogeling M, Adams S, Wargon O. A randomized controlled trial of propranolol for infantile hemangiomas. Pediatrics. 2011;128(2):e259–66.

    Article  PubMed  Google Scholar 

  43. Izadpanah A, Kanevsky J, Belzile E, Schwarz K. Propranolol versus corticosteroids in the treatment of infantile hemangioma: a systematic review and meta-analysis. Plast Reconstr Surg. 2013;131(3):601–13.

    Article  CAS  PubMed  Google Scholar 

  44. Biesbroeck L, Brandling-Bennett HA. Propranolol for infantile haemangiomas: review of report of a consensus conference. Arch Dis Child Educ Pract Ed. 2014;99(3):95–7.

    Article  PubMed  Google Scholar 

  45. Drolet BA, Frommelt PC, Chamlin SL, Haggstrom A, Bauman NM, Chiu YE, Chun RH, Garzon MC, Holland KE, Liberman L, et al. Initiation and use of propranolol for infantile hemangioma: report of a consensus conference. Pediatrics. 2013;131(1):128–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Horev A, Haim A, Zvulunov A. Propranolol induced hypoglycemia. Pediatr Endocrinol Rev. 2015;12(3):308-10.

    Google Scholar 

  47. Abarzua-Araya A, Navarrete-Dechent CP, Heusser F, Retamal J, Zegpi-Trueba MS. Atenolol versus propranolol for the treatment of infantile hemangiomas: a randomized controlled study. J Am Acad Dermatol. 2014;70(6):1045–9.

    Article  CAS  PubMed  Google Scholar 

  48. Pope E, Chakkittakandiyil A, Lara-Corrales I, Maki E, Weinstein M. Expanding the therapeutic repertoire of infantile haemangiomas: cohort-blinded study of oral nadolol compared with propranolol. Br J Dermatol. 2013;168(1):222–4.

    Article  CAS  PubMed  Google Scholar 

  49. Madamanchi A. Beta-adrenergic receptor signaling in cardiac function and heart failure. McGill J Med MJM Inter Forum Adv Med Sci Students. 2007;10(2):99–104.

    Google Scholar 

  50. Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of beta-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci. 2011;32(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  51. Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6.

    Article  CAS  PubMed  Google Scholar 

  52. Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem. 1997;66:807–22.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102(12):4459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396(6710):474–7.

    Article  PubMed  Google Scholar 

  55. Young R, Glennon RA. S(−)Propranolol as a discriminative stimulus and its comparison to the stimulus effects of cocaine in rats. Psychopharmacol. 2009;203(2):369–82.

    Article  CAS  Google Scholar 

  56. Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, Matsuo K, Squires KC, Coleman RL, Lutgendorf SK, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer. 2015;121(19):3444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.

    Article  CAS  PubMed  Google Scholar 

  59. Tang J, Li Z, Lu L, Cho CH. beta-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol. 2013;23(6 Pt B):533–42.

    Article  CAS  PubMed  Google Scholar 

  60. Rosbe KW, Suh KY, Meyer AK, Maguiness SM, Frieden IJ. Propranolol in the management of airway infantile hemangiomas. Arch Otolaryngol Head Neck Surg. 2010;136(7):658–65.

    Article  PubMed  Google Scholar 

  61. Nies AS, Evans GH, Shand DG. Regional hemodynamic effects of beta-adrenergic blockade with propranolol in the unanesthetized primate. Am Heart J. 1973;85(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  62. McSorley PD, Warren DJ. Effects of propranolol and metoprolol on the peripheral circulation. Br Med J. 1978;2(6152):1598–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vandenburg MJ, Conlon C, Ledingham JM. A comparison of the effects of propranolol and oxprenolol on forearm blood flow and skin temperature. Br J Clin Pharmacol. 1981;11(5):485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doshi BS, Kulkarni RD, Dattani KK, Anand MP. Effect of labetalol and propranolol on human cutaneous vasoconstrictor response to adrenaline. Int J Clin Pharmacol Res. 1984;4(1):25–8.

    CAS  PubMed  Google Scholar 

  65. Lee D, Boscolo E, Durham JT, Mulliken JB, Herman IM, Bischoff J. Propranolol targets the contractility of infantile haemangioma-derived pericytes. Br J Dermatol. 2014;171(5):1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kelley C, D’Amore P, Hechtman HB, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil. 1988;9(2):184–94.

    Article  CAS  PubMed  Google Scholar 

  67. Markhotina N, Liu GJ, Martin DK. Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol IET. 2007;1(3):44–51.

    Article  CAS  Google Scholar 

  68. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol. 1997;17(10):1846–58.

    Article  CAS  PubMed  Google Scholar 

  69. McHugh J, Cheek DJ. Nitric oxide and regulation of vascular tone: pharmacological and physiological considerations. Am J Crit Care Off Pub Am Asso Crit Care Nurses. 1998;7(2):131–40; quiz 141–2.

    Google Scholar 

  70. Ferro A, Coash M, Yamamoto T, Rob J, Ji Y, Queen L. Nitric oxide-dependent beta2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br J Pharmacol. 2004;143(3):397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dessy C, Saliez J, Ghisdal P, Daneau G, Lobysheva II, Frerart F, Belge C, Jnaoui K, Noirhomme P, Feron O, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005;112(8):1198–205.

    Article  CAS  PubMed  Google Scholar 

  72. Dai Y, Hou F, Buckmiller L, Fan CY, Saad A, Suen J, Richter GT. Decreased eNOS protein expression in involuting and propranolol-treated hemangiomas. Arch Otolaryngol Head Neck Surg. 2012;138(2):177–82.

    Article  PubMed  Google Scholar 

  73. Yuan WL, Jin ZL, Wei JJ, Liu ZY, Xue L, Wang XK. Propranolol given orally for proliferating infantile haemangiomas: analysis of efficacy and serological changes in vascular endothelial growth factor and endothelial nitric oxide synthase in 35 patients. Br J Oral Maxillofac Surg. 2013;51(7):656–61.

    Article  PubMed  Google Scholar 

  74. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5(Suppl 1):3–10.

    Article  CAS  PubMed  Google Scholar 

  75. Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest. 1994;93(6):2357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chang J, Most D, Bresnick S, Mehrara B, Steinbrech DS, Reinisch J, Longaker MT, Turk AE. Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg. 1999;103(1):1–9; discussion 10.

    Google Scholar 

  77. Kleinman ME, Greives MR, Churgin SS, Blechman KM, Chang EI, Ceradini DJ, Tepper OM, Gurtner GC. Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol. 2007;27(12):2664–70.

    Article  CAS  PubMed  Google Scholar 

  78. Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase a pathway involving Src but independently of Erk1/2. J Biol Chem. 2000;275(18):13802–11.

    Article  CAS  PubMed  Google Scholar 

  79. Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, Rainwater K, Ritchie JM, Yang M, Sood AK. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9(12):4514–21.

    CAS  PubMed  Google Scholar 

  80. Park SY, Kang JH, Jeong KJ, Lee J, Han JW, Choi WS, Kim YK, Kang J, Park CG, Lee HY. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer. 2011;128(10):2306–16.

    Article  CAS  PubMed  Google Scholar 

  81. Guo K, Ma Q, Wang L, Hu H, Li J, Zhang D, Zhang M. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep. 2009;22(4):825–30.

    CAS  PubMed  Google Scholar 

  82. Chen XD, Ma G, Huang JL, Chen H, Jin YB, Ye XX, Hu XJ, Lin XX. Serum-level changes of vascular endothelial growth factor in children with infantile hemangioma after oral propranolol therapy. Pediatr Dermatol. 2013;30(5):549–53.

    Article  PubMed  Google Scholar 

  83. Zhang L, Mai HM, Zheng J, Zheng JW, Wang YA, Qin ZP, Li KL. Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. Inter J Clin Exp Pathol. 2014;7(1):48–55.

    Google Scholar 

  84. Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37(3):535–40.

    Article  CAS  PubMed  Google Scholar 

  86. Li P, Guo Z, Gao Y, Pan W. Propranolol represses infantile hemangioma cell growth through the beta2-adrenergic receptor in a HIF-1alpha-dependent manner. Oncol Rep. 2015;33(6):3099–107.

    CAS  PubMed  Google Scholar 

  87. Wong L, Nation RL, Chiou WL, Mehta PK. Plasma concentrations of propranolol and 4-hydroxypropranolol during chronic oral propranolol therapy. Br J Clin Pharmacol. 1979;8(2):163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ji Y, Chen S, Li K, Xiao X, Zheng S, Xu T. The role of beta-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div. 2013;8(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Greenberger S, Yuan S, Walsh LA, Boscolo E, Kang KT, Matthews B, Mulliken JB, Bischoff J. Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J Invest Dermatol. 2011;131(12):2467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bagazgoitia L, Hernandez-Martin A, Torrelo A. Recurrence of infantile hemangiomas treated with propranolol. Pediatr Dermatol. 2011;28(6):658–62.

    Article  PubMed  Google Scholar 

  91. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nusing RM, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science New York NY. 2010;328(5982):1158–61.

    Article  CAS  Google Scholar 

  92. Li H, Fong C, Chen Y, Cai G, Yang M. beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch Biochem Biophys. 2010;496(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  93. Wong A, Hardy KL, Kitajewski AM, Shawber CJ, Kitajewski JK, Wu JK. Propranolol accelerates adipogenesis in hemangioma stem cells and causes apoptosis of hemangioma endothelial cells. Plast Reconstr Surg. 2012;130(5):1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. England RW, Hardy KL, Kitajewski AM, Wong A, Kitajewski JK, Shawber CJ, Wu JK. Propranolol promotes accelerated and dysregulated adipogenesis in hemangioma stem cells. Ann Plast Surg. 2014;73(Suppl 1):S119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ma X, Zhao T, Ouyang T, Xin S, Ma Y, Chang M. Propranolol enhanced adipogenesis instead of induction of apoptosis of hemangiomas stem cells. Inter J Clin Exp Pathol. 2014;7(7):3809–17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshana Greenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Greenberger, S. (2017). Infantile Hemangioma: New Insights on Pathogenesis and Beta Blockers Mechanisms of Action. In: Arbiser, J. (eds) Angiogenesis-Based Dermatology. Springer, London. https://doi.org/10.1007/978-1-4471-7314-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7314-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7312-0

  • Online ISBN: 978-1-4471-7314-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics