Skip to main content

Part of the book series: Universitext ((UTX))

  • 3121 Accesses

Abstract

In Chap. 5 we defined the Lebesgue integral of functions defined on \(\mathbb{R}\). In this chapter we show that the theory remains valid in a much more general framework;moreover, almost all proofs can be repeated word for word. The results of this chapter include integrals of several variables and integrals on probability spaces

In my opinion, a mathematician, in so far as he is a mathematician, need not preoccupy himself with philosophy – an opinion, moreover, which has been expressed by many philosophers. –H. Lebesgue

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Radon [366], Fréchet [158], Daniell [93]. In this book we consider only real-valued functions, although Bochner [46] extended the theory to Banach space-valued functions, and this has important applications among others in the theory of partial differential equations. See, e.g., Dunford–Schwartz [117], Edwards [119], Yosida [488], and Lions–Magenes [305].

  2. 2.

    Kolmogorov [252].

  3. 3.

    Halmos [184] introduced a slightly more restricted notion, but the present definition has become standard by now.

  4. 4.

    Borel [59].

  5. 5.

    Since \(\mu (\varnothing ) = 0\), the equality (7.1) holds for finite disjoint sequences as well. Finitely additive set functions were studied before Borel by Harnack [192], Cantor [74, pp. 229–236], Stolz [437], Peano [353, pp. 154–158] and Jordan [231, pp. 76–79].

  6. 6.

    The statement and its proof remain valid for unbounded intervals, too.

  7. 7.

    In this book we do not distinguish between different infinite cardinalities, except in an example on p. 243 and in some exercises.

  8. 8.

    The so-called co-finite sets.

  9. 9.

    The measurability of the constant functions is equivalent to the measurability of X.

  10. 10.

    In this book, following F. Riesz, we adopt a more restrictive measurability notion than usual. See Sect. 7.7 on the advantages of this choice.

  11. 11.

    We apply the lemma for each f n , and we take the union of the corresponding set sequences.

  12. 12.

    We sometimes express this property by saying that f has a \(\sigma\)-finite support . Using this terminology X is measurable \(\Longleftrightarrow\ X\) is \(\sigma\)-finite.

  13. 13.

    The function class C 1 was defined on p. 174.

  14. 14.

    We already know that this extension is unique.

  15. 15.

    See the beginning of the proof of Proposition 7.6: we already know that \(\mathcal{P}\subset \mathcal{N} \subset \mathcal{M}\).

  16. 16.

    Euler [130], Dirichlet [113], and Stolz [438, pp. 93–94].

  17. 17.

    Lebesgue [288] (for bounded functions), Fubini [164]. Fubini’s proof was incorrect; the first correct proofs were given by Hobson [214] and de la Vallée-Poussin [464]. See Hawkins [198].

  18. 18.

    In the proof of this theorem the application of Lemma 5.3 (p. 173) is sufficient because we consider only sequences of step functions.

  19. 19.

    Tonelli [457].

  20. 20.

    The former counterexamples of Cauchy [81, p. 394], Thomae [452] and du Bois-Reymond [53] were based on the smallness of the class of Riemann integrable functions.

  21. 21.

    Further counterexamples are given in Exercise 7.8 below, p. 253.

  22. 22.

    See Gurevich–Silov [175, p. 180].

  23. 23.

    For otherwise we would have for every one-point set \(A \subset N\) the impossible inequalities \(1 =\mu (A) =\mu (A \cap N) \leq 0\).

  24. 24.

    This also follows from Lemma 7.13 (c) below.

  25. 25.

    We may have equality if \(\mu (A) = -\infty \).

  26. 26.

    We recall that they are defined on a \(\sigma\)-ring.

  27. 27.

    See Proposition 7.11, p. 230.

  28. 28.

    See Proposition 7.3, p. 216.

  29. 29.

    Lebesgue [295, pp. 232–249].

  30. 30.

    See p. 213.

  31. 31.

    However, the present definition of absolute continuity is interesting only if μ is a measure.

  32. 32.

    Radon [366, pp. 1342–1351] and Nikodým [342, pp. 167–179]. We recall from the preceding section that the strong \(\sigma\)-finiteness condition is satisfied if μ is a finite measure or if X is measurable.

  33. 33.

    See also an alternative proof of von Neumann [339, pp. 124–130], based on the orthogonal projection in Hilbert spaces.

  34. 34.

    See the remark on p. 238

  35. 35.

    See Halmos [184, pp. 131–132]. In this example we use the notion of cardinality of infinite sets, but we need only the simplest results: see, e.g., Halmos [186] or Vilenkin [467, 468].

  36. 36.

    Because every measurable set is covered by countably many lines.

  37. 37.

    See Proposition 5.17 (d), p. 190.

  38. 38.

    See Hewitt–Stromberg [207, p. 317].

  39. 39.

    See Lemma 7.13 (b), p. 232.

  40. 40.

    The proposition extends classical results of Euler [130, p. 303], Lagrange [280, p. 624] and Jacobi [224, p. 436].

  41. 41.

    They are also ν-measurable because \(\mu (X) < \infty \).

  42. 42.

    Proposition 5.17 (e), p. 190.

  43. 43.

    We recall from Lemma 7.5 (p. 220) that X is measurable \(\Longleftrightarrow\) it has a countable cover by sets of \(\mathcal{P}\) (and hence of finite measure).

  44. 44.

    Indeed, this choice is taken by most contemporary textbooks by defining measurability using inverse images. While Hausdorff’s elegant characterization of continuous functions by inverse images of open or closed sets is extremely useful in topology, the analogous definition of measurability leads to several annoying counterexamples.

  45. 45.

    Fréchet [158] and Riesz–Sz.-Nagy [394].

  46. 46.

    L. Czách, private communication, 2005.

  47. 47.

    Carathéodory [77]. See also Burkill [68], Halmos [184], and Natanson [332].

  48. 48.

    Stieltjes [435].

  49. 49.

    Hausdorff [196]. See, e.g., Falconer [134]. Some number-theoretical applications are given in de Vries–Komornik [101] and Komornik–Kong–Li [259].

  50. 50.

    More generally, we may consider countable covers by sets of diameter \(\mathop{\mathrm{diam}}\nolimits I_{i} \leq \delta\) in a metric space.

  51. 51.

    Carathéodory’s construction (Exercise 7.4) yields the s-dimensional Hausdorff measure.

References

  1. N.I. Achieser, Theory of Approximation (Dover, New York, 1992)

    MATH  Google Scholar 

  2. N.I. Akhieser, I.M. Glazman, Theory of Linear Operators in Hilbert Space I-II (Dover, New York, 1993)

    Google Scholar 

  3. L. Alaoglu, Weak topologies of normed linear spaces, Ann. Math. (2) 41, 252–267 (1940)

    Google Scholar 

  4. P.S. Alexandroff, Einführung in die Mengenlehre und in die allgemeine Topologie (German) [Introduction to Set Theory and to General Topology]. Translated from the Russian by Manfred Peschel, Wolfgang Richter and Horst Antelmann. Hochschulbücher für Mathematik. University Books for Mathematics, vol. 85 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1984), 336 pp

    Google Scholar 

  5. F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications (De Gruyter, Berlin, 1994)

    Book  MATH  Google Scholar 

  6. Archimedes, Quadrature of the parabola; [199], 235–252

    Google Scholar 

  7. C. Arzelà, Sulla integrazione per serie. Rend. Accad. Lincei Roma 1, 532–537, 566–569 (1885)

    MATH  Google Scholar 

  8. C. Arzelà, Funzioni di linee. Atti Accad. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (4) 5I, 342–348 (1889)

    Google Scholar 

  9. C. Arzelà, Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. (5) 5, 55–74 (1895)

    Google Scholar 

  10. C. Arzelà, Sulle serie di funzioni. Memorie Accad. Sci. Bologna 8, 131–186 (1900), 701–744

    Google Scholar 

  11. G. Ascoli, Sul concetto di integrale definite. Atti Acc. Lincei (2) 2, 862–872 (1875)

    Google Scholar 

  12. G. Ascoli, Le curve limiti di una varietà data di curve. Mem. Accad. dei Lincei (3) 18, 521–586 (1883)

    Google Scholar 

  13. G. Ascoli, Sugli spazi lineari metrici e le loro varietà lineari. Ann. Mat. Pura Appl. (4) 10, 33–81, 203–232 (1932)

    Google Scholar 

  14. D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Am. Math. Soc. 16, 220–221 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Avanissian, Initiation à l’analyse fonctionnelle (Presses Universitaires de France, Paris, 1996)

    MATH  Google Scholar 

  16. R. Baire, Sur les fonctions discontinues qui se rattachent aux fonctions continues. C. R. Acad. Sci. Paris 126, 1621–1623 (1898). See in [18]

    Google Scholar 

  17. R. Baire, Sur les fonctions à variables réelles. Ann. di Mat. (3) 3, 1–123 (1899). See in [18]

    Google Scholar 

  18. R. Baire, Oeuvres Scientifiques, (Gauthier-Villars, Paris, 1990)

    MATH  Google Scholar 

  19. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922); [26] II, 305–348

    Google Scholar 

  20. S. Banach, An example of an orthogonal development whose sum is everywhere different from the developed function. Proc. Lond. Math. Soc. (2) 21, 95–97 (1923)

    Google Scholar 

  21. S. Banach, Sur le problème de la mesure. Fund. Math. 4, 7–33 (1923)

    MATH  Google Scholar 

  22. S. Banach, Sur les fonctionnelles linéaires I-II. Stud. Math. 1, 211–216, 223–239 (1929); [26] II, 375–395

    Google Scholar 

  23. S. Banach, Théorèmes sur les ensembles de première catégorie. Fund. Math. 16, 395–398 (1930); [26] I, 204–206

    Google Scholar 

  24. S. Banach, Théorie des opérations linéaires (Monografje Matematyczne, Warszawa, 1932); [26] II, 13–219

    Google Scholar 

  25. S. Banach, The Lebesgue Integral in Abstract Spaces; Jegyzet a [409] könyvben (1937)

    Google Scholar 

  26. S. Banach, Oeuvres I-II (Państwowe Wydawnictwo Naukowe, Warszawa, 1967, 1979)

    Google Scholar 

  27. S. Banach, S. Mazur, Zur Theorie der linearen Dimension. Stud. Math. 4, 100–112 (1933); [26] II, 420–430

    Google Scholar 

  28. S. Banach, H. Steinhaus, Sur le principe de la condensation de singularités. Fund. Math. 9, 50–61 (1927); [26] II, 365–374

    Google Scholar 

  29. S. Banach, A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes. Fund. Math. 6, 244–277 (1924)

    MATH  Google Scholar 

  30. R.G. Bartle, A Modern Theory of Integration. Graduate Studies in Mathematics, vol. 32 (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  31. W.R. Bauer, R.H. Brenner, The non-existence of a banach space of countably infinite hamel dimension. Am. Math. Mon. 78, 895–896 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Beauzamy, Introduction to Banach Spaces and Their Geometry (North-Holland, Amsterdam, 1985)

    MATH  Google Scholar 

  33. P.R. Beesack, E. Hughes, M. Ortel, Rotund complex normed linear spaces. Proc. Am. Math. Soc. 75 (1), 42–44 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. S.K. Berberian, Notes on Spectral Theory (Van Nostrand, Princeton, NJ, 1966)

    MATH  Google Scholar 

  35. S.K. Berberian, Introduction to Hilbert Space (Chelsea, New York, 1976)

    MATH  Google Scholar 

  36. S.J. Bernau, F. Smithies, A note on normal operators. Proc. Camb. Philos. Soc. 59, 727–729 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Bernkopf, The development of functions spaces with particular reference to their origins in integral equation theory. Arch. Hist. Exact Sci. 3, 1–66 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Bernoulli, Réflexions et éclaircissements sur les nouvelles vibrations des cordes. Hist. Mém Acad. R. Sci. Lett. Berlin 9, 147–172 (1753) (published in 1755)

    Google Scholar 

  39. S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Kharkov Math. Soc. 13, 1–2 (1912)

    MATH  Google Scholar 

  40. C. Bessaga, A. Pelczýnski, Selected Topics in Infinite-Dimensional Topology. Monografje Matematyczne, Tome 58 (Państwowe Wydawnictwo Naukowe, Warszawa, 1975)

    Google Scholar 

  41. F.W. Bessel, Über das Dollond’sche Mittagsfernrohr etc. Astronomische Beobachtungen etc. Bd. 1, Königsberg 1815, [43] II, 24–25

    Google Scholar 

  42. F.W. Bessel, Über die Bestimmung des Gesetzes einer priosischen Erscheinung, Astron. Nachr. Bd. 6, Altona 1828, 333–348, [43] II, 364–368

    Google Scholar 

  43. F.W. Bessel, Abhandlungen von Friedrich Wilhelm Bessel I-III, ed. by R. Engelman (Engelmann, Leipzig, 1875–1876)

    Google Scholar 

  44. P. Billingsley, Van der Waerden’s continuous nowhere differentiable function. Am. Math. Mon. 89, 691 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Birkhoff, E. Kreyszig, The establishment of functional analysis. Hist. Math. 11, 258–321 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Bochner, Integration von Funktionen, deren Wert die Elemente eines Vektorraumes sind. Fund. Math. 20, 262–276 (1933)

    MATH  Google Scholar 

  47. H. Bohman, On approximation of continuous and analytic functions. Ark. Mat 2, 43–56 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  48. H.F. Bohnenblust, A. Sobczyk, Extensions of functionals on complex linear spaces. Bull. Am. Math. Soc. 44, 91–93 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  49. P. du Bois-Reymond, Ueber die Fourier’schen Reihen. Nachr. K. Ges. Wiss. Göttingen 21, 571–582 (1873)

    Google Scholar 

  50. P. du Bois Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen [German]. J. Reine Angew. Math. 79, 21–37 (1875)

    MathSciNet  Google Scholar 

  51. P. du Bois-Reymond, Untersuchungen über die Convergenz und Divergenz der Fourierschen Darstellungsformeln (mit drei lithografierten Tafeln). Abh. Math. Phys. KI. Bayer. Akad. Wiss. 12, 1–103 (1876)

    Google Scholar 

  52. P. du Bois-Reymond, Die allgemeine Funktionentheorie (Laapp, Tübingen, 1882); French translation: Théorie générale des fonctions, Nice, 1887

    Google Scholar 

  53. P. du Bois-Reymond, Ueber das Doppelintegral. J. Math. Pures Appl. 94, 273–290 (1883)

    MathSciNet  MATH  Google Scholar 

  54. B. Bolzano, Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege (Prag, Haase, 1817). New edition: Ostwald’s Klassiker der exakten Wissenschaften, No. 153, Leipzig, 1905. English translation: Purely analytic proof of the theorem the between any two values which give results of opposite sign there lies at least one real root of the equation. Historia Math. 7, 156–185 (1980); See also in [57].

    Google Scholar 

  55. B. Bolzano, Functionenlehre, around 1832. Partially published in Königliche böhmische Gesellschaft der Wissenschaften, Prága, 1930; complete publication in [56] 2A10/1, 2000, 23–165; English translation: [57], 429–572.

    Google Scholar 

  56. B. Bolzano, Bernard Bolzano Gesamtausgabe (Frommann–Holzboog, Stuttgart, 1969)

    MATH  Google Scholar 

  57. B. Bolzano, The Mathematical Works of Bernard Bolzano, translated by S. Russ, (Oxford University Press, Oxford, 2004)

    Google Scholar 

  58. E. Borel, Sur quelques points de la théorie des fonctions. Ann. Éc. Norm. Sup. (3) 12, 9–55 (1895); [62] I, 239–285

    Google Scholar 

  59. E. Borel, Leçons sur la théorie des fonctions (Gauthier-Villars, Paris, 1898)

    Google Scholar 

  60. E. Borel, Leçons sur les fonctions de variables réelles (Gauthier-Villars, Paris, 1905)

    MATH  Google Scholar 

  61. E. Borel (ed.), L. Zoretti, P. Montel, M. Fréchet, Recherches contemporaines sur la théorie des fonctions: Les ensembles de points, Intégration et dérivation, Développements en séries. Encyclopédie des sciences mathématiques, II-2 (Gauthier-Villars/Teubner, Paris/Leipzig, 1912) German translation and adaptation by A. Rosenthal: Neuere Untersuchungen über Funktionen reeller Veränderlichen: Die Punktmengen, Integration und Differentiation, Funktionenfolgen, Encyklopädie der mathematischen Wissenschaften, II-9 (Teubner, Leipzig, 1924)

    Google Scholar 

  62. E. Borel, Oeuvres I-IV (CNRS, Paris, 1972)

    Google Scholar 

  63. M.W. Botsko, An elementary proof of Lebesgue’s differentiation theorem. Am. Math. Mon. 110, 834–838 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. N. Bourbaki, Sur les espaces de Banach. C. R. Acad. Sci. Paris 206, 1701–1704 (1938)

    MATH  Google Scholar 

  65. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York, 2010)

    Book  Google Scholar 

  66. H. Brunn, Zur Theorie der Eigebiete. Arch. Math. Phys. (3) 17, 289–300 (1910)

    Google Scholar 

  67. J.R. Buddenhagen, Subsets of a countable set. Am. Math. Mon. 78, 536–537 (1971)

    Article  MathSciNet  Google Scholar 

  68. J.C. Burkill, The Lebesgue Integral (Cambridge University Press, Cambridge, 1951)

    Book  MATH  Google Scholar 

  69. G. Cantor, Ueber trigonometrische Reihen. Math. Ann. 4, 139–143 (1871); [76], 87–91

    Google Scholar 

  70. G. Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine Angew. Math. 77, 258–262 (1874); [76], 115–118

    Google Scholar 

  71. G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten III. Math. Ann. 20, 113–121 (1882); [76], 149–157

    Google Scholar 

  72. G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten V. Math. Ann. 21, 545–586 (1883); [76], 165–208

    Google Scholar 

  73. G. Cantor, De la puissance des ensembles parfaits de points. Acta Math. 4, 381–392 (1884)

    Article  MathSciNet  Google Scholar 

  74. G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten VI. Math. Ann. 23, 451–488 (1884); [76], 210–244

    Google Scholar 

  75. G. Cantor, Über eine Frage der Mannigfaltigkeitslehre. Jahresber. Deutsch. Math. Verein. 1, 75–78 (1890–1891); [76], 278–280

    Google Scholar 

  76. G. Cantor, Gesammelte Abhandlungen (Springer, Berlin, 1932)

    Book  MATH  Google Scholar 

  77. C. Carathéodory, Constantin Vorlesungen über reelle Funktionen [German], 3rd edn. (Chelsea, New York, 1968), x+718 pp. [1st edn. (Teubner, Leipzig, 1918); 2nd edn. (1927); reprinting (Chelsea, New York, 1948)]

    Google Scholar 

  78. L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  79. A.L. Cauchy, Cours d’analyse algébrique (Debure, Paris, 1821); [82] (2) III, 1–476

    Google Scholar 

  80. L.-A. Cauchy, Résumé des leçons données à l’École Polytechnique sur le calcul infinitésimal. Calcul intégral (1823); [82] (2) IV, 122–261

    Google Scholar 

  81. L.-A. Cauchy, Mémoire sur les intégrales définies. Mém. Acad. Sci. Paris 1 (1827); [82] (1) I, 319–506

    Google Scholar 

  82. A.L. Cauchy, Oeuvres, 2 sorozat, 22 kötet (Gauthier-Villars, Paris, 1882–1905)

    Google Scholar 

  83. P.L. Chebyshev [Tchebychef], Sur les questions de minima qui se rattachent à la représentation approximative des fonctions. Mém. Acad. Imp. Sci. St. Pétersb. (6) Sciences math. et phys. 7, 199–291 (1859); [84] I, 273–378

    Google Scholar 

  84. P.L. Chebyshev [Tchebychef], Oeuvres I-II (Chelsea, New York, 1962)

    Google Scholar 

  85. E.W. Cheney, Introduction to Approximation Theory (Chelsea, New York, 1982)

    MATH  Google Scholar 

  86. P.R. Chernoff, Pointwise convergence of Fourier series. Am. Math. Monthly 87, 399–400 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  87. P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications (SIAM, Philadelphia, 2013)

    MATH  Google Scholar 

  88. A.C. Clairaut, Mémoire sur l’orbite apparente du soleil autour de la Terre, en ayant égard aux perturbations produites par des actions de la Lune et des Planètes principales. Hist. Acad. Sci. Paris, 52–564 (1754, appeared in 1759)

    Google Scholar 

  89. J.A. Clarkson, Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  90. J.A. Clarkson, P. Erdős, Approximation by polynomials. Duke Math. J. 10, 5–11 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Courant, D. Hilbert, Methoden de matematischen Physik I (Springer, Berlin, 1931)

    Book  MATH  Google Scholar 

  92. Á. Császár, Valós analízis I–II [Real Analysis I–II] (Tankönyvkiadó, Budapest, 1983)

    Google Scholar 

  93. P. Daniell, A general form of integral. Ann. Math. 19, 279–294 (1917/18)

    Google Scholar 

  94. G. Dantzig, Linear Programming and Extensions (Princeton University Press/RAND Corporation, Princeton/Santa Monica, 1963)

    MATH  Google Scholar 

  95. G. Darboux, Mémoire sur les fonctions discontinues. Ann. Éc. Norm. Sup. Paris (2) 4, 57–112 (1875)

    Google Scholar 

  96. M.M. Day, The spaces L p with 0 < p < 1. Bull. Am. Math. Soc. 46, 816–823 (1940)

    Article  MATH  Google Scholar 

  97. M.M. Day, Normed Linear Spaces (Springer, Berlin, 1962)

    Book  MATH  Google Scholar 

  98. A. Denjoy, Calcul de la primitive de la fonction dérivée la plus générale. C. R. Acad. Sci. Paris 154, 1075–1078 (1912)

    MATH  Google Scholar 

  99. A. Denjoy, Une extension de l’intégrale de M. Lebesgue. C. R. Acad. Sci. Paris 154, 859–862 (1912)

    MATH  Google Scholar 

  100. A. Denjoy, Mémoire sur la totalisation des nombres dérivées non sommables. Ann. Éc. Norm. Sup. Paris (3) 33, 127–222 (1916)

    Google Scholar 

  101. M. de Vries, V. Komornik, Unique expansions of real numbers. Adv. Math. 221, 390–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  102. M. de Vries, V. Komornik, P. Loreti, Topology of univoque bases. Topol. Appl. (2016). doi:10.1016/j.topol.2016.01.023,

    MATH  Google Scholar 

  103. J. Diestel, Geometry of Banach Spaces. Selected Topics (Springer, New York, 1975)

    Google Scholar 

  104. J. Diestel, Sequences and Series in Banach Spaces (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  105. J. Dieudonné, Sur le théorème de Hahn–Banach. Revue Sci. 79, 642–643 (1941)

    MathSciNet  MATH  Google Scholar 

  106. J. Dieudonné, History of Functional Analysis (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  107. U. Dini, Sopra la serie di Fourier (Nistri, Pisa, 1872)

    Google Scholar 

  108. U. Dini, Sulle funzioni finite continue de variabili reali che non hanno mai derivata. Atti R. Acc. Lincei, (3), 1, 130–133 (1877); [111] II, 8–11

    Google Scholar 

  109. U. Dini, Fondamenti per la teoria delle funzioni di variabili reali (Nistri, Pisa, 1878)

    Google Scholar 

  110. U. Dini, Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale (Nistri, Pisa, 1880); [111] IV, 1–272

    Google Scholar 

  111. U. Dini, Opere I-V (Edizioni Cremonese, Roma, 1953–1959)

    Google Scholar 

  112. G.L. Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. J. Reine Angew. Math. 4, 157–169 (1829); [114] I, 117–132

    Google Scholar 

  113. G.L. Dirichlet, Über eine neue Methode zur Bestimmung vielfacher Integrale. Ber. Verh. K. Preuss. Acad. Wiss. Berlin, 18–25 (1839); [114] I, 381–390

    Google Scholar 

  114. G.L. Dirichlet, Werke I-II (Reimer, Berlin, 1889–1897)

    Google Scholar 

  115. J.L. Doob, The Development of Rigor in Mathematical Probability (1900–1950), [361], 157–169

    Google Scholar 

  116. N. Dunford, Uniformity in linear spaces. Trans. Am. Math. Soc. 44, 305–356 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  117. N. Dunford, J.T. Schwartz, Linear Operators I-III (Wiley, New York, 1957–1971)

    Google Scholar 

  118. W.F. Eberlein, Weak compactness in Banach spaces I. Proc. Natl. Acad. Sci. USA 33, 51–53 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  119. R.E. Edwards, Functional Analysis. Theory and Applications (Holt, Rinehart and Winston, New York, 1965)

    Google Scholar 

  120. R.E. Edwards, Fourier Series. A Modern Introduction I-II (Springer, New York, 1979–1982)

    Google Scholar 

  121. D.Th. Egoroff, Sur les suites de fonctions mesurables. C. R. Acad. Sci. Paris 152, 244–246 (1911)

    MATH  Google Scholar 

  122. M. Eidelheit, Zur Theorie der konvexen Mengen in linearen normierten Räumen. Stud. Math. 6, 104–111 (1936)

    MATH  Google Scholar 

  123. H.W. Ellis, D.O. Snow, On (L 1) for general measure spaces, Can. Math. Bull. 6, 211–229 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  124. P. Erdős, P. Turán, On interpolation I. Quadrature- and mean-convergence in the Lagrange interpolation. Ann. Math. 38, 142–155 (1937); [126] I, 50–51, 97–98, 54–63

    Google Scholar 

  125. P. Erdős, P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes. Acta Math. Acad. Sci. Hungar. 36, 71–89 (1980), 38, 263 (1981)

    Google Scholar 

  126. P. Erdős (ed.), Collected Papers of Paul Turán I-III (Akadémiai Kiadó, Budapest, 1990)

    Google Scholar 

  127. P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions \(1 =\sum q^{-n_{i}}\) and related problems. Bull. Soc. Math. France 118, 377–390 (1990)

    MathSciNet  MATH  Google Scholar 

  128. L. Euler, De summis serierum reciprocarum. Comm. Acad. Sci. Petrop. 7, 123–134 (1734/1735, appeared in 1740); [132] (1) 14, 73–86

    Google Scholar 

  129. L. Euler, Introductio in analysin infinitorum I (M.-M. Bousquet, Lausanne, 1748); [132] (1) 8

    Google Scholar 

  130. L. Euler, De formulis integralibus duplicatis. Novi Comm. Acad. Sci. Petrop. 14 (1769): I, 1770, 72–103; [132] (1) 17, 289–315

    Google Scholar 

  131. L. Euler, Disquisitio ulterior super seriebus secundum multipla cuius dam anguli progredientibus. Nova Acta Acad. Sci. Petrop. 11, 114–132 (1793, written in 1777, appeared in 1798); [132] (1) 16, Part 1, 333–355

    Google Scholar 

  132. L. Euler, Opera Omnia, 4 series, 73 volumes (Teubner/Füssli, Leipzig/Zürich, 1911)

    MATH  Google Scholar 

  133. G. Faber, Über die interpolatorische Darstellung stetiger Funtionen. Jahresber. Deutsch. Math. Verein. 23, 192–210 (1914)

    MATH  Google Scholar 

  134. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. (Wiley, Chicester, 2003)

    Google Scholar 

  135. J. Farkas, Über die Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  136. P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  137. L. Fejér, Sur les fonctions bornées et intégrables. C. R. Acad. Sci. Paris 131, 984–987 (1900); [143] I, 37–41

    Google Scholar 

  138. L. Fejér, Untersuchungen über Fouriersche Reihen. Math. Ann. 58, 51–69 (1904); [143] I, 142–160

    Google Scholar 

  139. L. Fejér, Eine stetige Funktion deren Fourier’sche Reihe divergiert. Rend. Circ. Mat. Palermo 28, 1, 402–404 (1909); [143] I, 541–543

    Google Scholar 

  140. L. Fejér, Beispiele stetiger Funktionen mit divergenter Fourierreihe. J. Reine Angew. Math. 137, 1–5 (1910); [143] I, 538–541

    Google Scholar 

  141. L. Fejér, Lebesguesche Konstanten und divergente Fourierreihen. J. Reine Angew. Math. 138, 22–53 (1910); [143] I, 543–572

    Google Scholar 

  142. L. Fejér, Über Interpolation. Götting. Nachr. 66–91 (1916); [143] II, 25–48

    Google Scholar 

  143. L. Fejér, Leopold Fejér. Gesammelte Arbeiten I-II, ed. by Turán Pál (Akadémiai Kiadó, Budapest, 1970)

    Google Scholar 

  144. G. Fichera, Vito Volterra and the birth of functional analysis, [361], 171–183

    Google Scholar 

  145. G.M. Fichtenholz, L.V. Kantorovich [Kantorovitch], Sur les opérations linéaires dans l’espace des fonctions bornées. Stud. Math. 5, 69–98 (1934)

    Google Scholar 

  146. E. Fischer, Sur la convergence en moyenne. C. R. Acad. Sci. Paris 144, 1022–1024, 1148–1150 (1907)

    MATH  Google Scholar 

  147. S.R. Foguel, On a theorem by A.E. Taylor. Proc. Am. Math. Soc. 9, 325 (1958)

    Google Scholar 

  148. J.B.J. Fourier, Théorie analytique de la chaleur (Didot, Paris 1822); [149] I

    Google Scholar 

  149. J.B.J. Fourier Oeuvres de Fourier I-II (Gauthier-Villars, Paris, 1888–1890)

    Google Scholar 

  150. I. Fredholm, Sur une nouvelle méthode pour la résolution du problème de Dirichlet. Kong. Vetenskaps-Akademiens Förh. Stockholm, 39–46 (1900); [152], 61–68

    Google Scholar 

  151. I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903); [152], 81–106

    Google Scholar 

  152. I. Fredholm, Oeuvres complètes de Ivar Fredholm (Litos Reprotryck, Malmo, 1955)

    MATH  Google Scholar 

  153. G. Freud, Über positive lineare Approximationsfolgen von stetigen reellen Funktionen auf kompakten Mengen. On Approximation Theory, Proceedings of the Conference in Oberwolfach, 1963 (Birkhäuser, Basel, 1964), pp. 233–238

    Google Scholar 

  154. M. Fréchet, Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74 (1906)

    Article  MATH  Google Scholar 

  155. M. Fréchet, Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416 (1907)

    MATH  Google Scholar 

  156. M. Fréchet, Sur les opérations linéaires III. Trans. Am. Math. Soc. 8, 433–446 (1907)

    Article  MATH  Google Scholar 

  157. M. Fréchet, Les dimensions d’un ensemble abstrait. Math. Ann. 68, 145–168 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  158. M. Fréchet, Sur l’intégrale d’une fonctionnelle étendue à un ensemble abstrait. Bull. Soc. Math. France 43, 248–265 (1915)

    MathSciNet  MATH  Google Scholar 

  159. M. Fréchet, L’écart de deux fonctions quelconques. C. R. Acad. Sci. Paris 162, 154–155 (1916)

    Google Scholar 

  160. M. Fréchet, Sur divers modes de convergence d’une suite de fonctions d’une variable réelle. Bull. Calcutta Math. Soc. 11, 187–206 (1919–1920)

    Google Scholar 

  161. M. Fréchet, Les espaces abstraits (Gauthier-Villars, Paris, 1928)

    MATH  Google Scholar 

  162. G. Frobenius, Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math. 84, 1–63 (1878); [163] I, 343–405

    Google Scholar 

  163. G. Frobenius, Gesammelte Abhandlungen I-III (Springer, Berlin, 1968)

    Book  Google Scholar 

  164. G. Fubini, Sugli integrali multipli. Rend. Accad. Lincei Roma 16, 608–614 (1907)

    MATH  Google Scholar 

  165. G. Fubini, Sulla derivazione per serie. Rend. Accad. Lincei Roma 24, 204–206 (1915)

    MATH  Google Scholar 

  166. I.S. Gál, On sequences of operations in complete vector spaces. Am. Math. Mon. 60, 527–538 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  167. B.R. Gelbaum, J.M.H. Olmsted, Counterexamples in Mathematics (Holden-Day, San Francisco, 1964)

    MATH  Google Scholar 

  168. B.R. Gelbaum, J.M.H. Olmsted, Theorems and Counterexamples in Mathematics (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  169. L. Gillman, M. Jerison, Rings of Continuous Functions (D. Van Nostrand Company, Princeton, 1960)

    Book  MATH  Google Scholar 

  170. I.M. Glazman, Ju.I. Ljubic, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form (Dover, New York, 2006)

    MATH  Google Scholar 

  171. H.H. Goldstine, Weakly complete Banach spaces. Duke Math. J. 4, 125–131 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  172. D.B. Goodner, Projections in normed linear spaces. Trans. Am. Math. Soc. 69, 89–108 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  173. J.P. Gram, Om Rackkendvilklinger bestemte ved Hjaelp af de mindste Kvadraters Methode, Copenhagen, 1879. German translation: Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadrate, J. Reine Angew. Math. 94, 41–73 (1883)

    MathSciNet  Google Scholar 

  174. A. Grothendieck, Sur la complétion du dual d’un espace vectoriel localement convexe. C. R. Acad. Sci. Paris 230, 605–606 (1950)

    MathSciNet  MATH  Google Scholar 

  175. B.L. Gurevich, G.E. Shilov, Integral, Measure and Derivative: A Unified Approach (Prentice-Hall, Englewood Cliffs, NJ, 1966)

    MATH  Google Scholar 

  176. A. Haar, Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910); [179], 47–87

    Google Scholar 

  177. A. Haar, Reihenentwicklungen nach Legendreschen Polynomen. Math. Ann. 78, 121–136 (1918); [179], 124–139

    Google Scholar 

  178. A. Haar, A folytonos csoportok elméletéről. Magyar Tud. Akad. Mat. és Természettud. Ért. 49, 287–306 (1932); [182], 579–599; German translation: Die Maßbegriffe in der Theorie der kontinuierlichen Gruppen, Ann. Math. 34, 147–169 (1933); [182], 600–622

    Google Scholar 

  179. A. Haar, Gesammelte Arbeiten, ed. by B. Sz.-Nagy (Akadémiai Kiadó, Budapest, 1959)

    Google Scholar 

  180. H. Hahn, Theorie der reellen Funktionen I (Springer, Berlin, 1921)

    Book  MATH  Google Scholar 

  181. P. Hahn, Über Folgen linearer Operationen. Monatsh. Math. Physik 32, 3–88 (1922); [183] I, 173–258

    Google Scholar 

  182. P. Hahn, Über linearer Gleichungssysteme in linearer Räumen. J. Reine Angew. Math. 157, 214–229 (1927); [183] I, 259–274

    Google Scholar 

  183. P. Hahn, Gesammelte Abhandlungen I-III (Springer, New York, 1995–1997)

    Google Scholar 

  184. P.R. Halmos, Measure Theory (D. Van Nostrand Co., Princeton, NJ, 1950)

    Book  MATH  Google Scholar 

  185. P.R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity (Chelsea, New York, 1957)

    MATH  Google Scholar 

  186. P.R. Halmos, L Naive Set Theory (Van Nostrand, Princeton, NJ, 1960)

    MATH  Google Scholar 

  187. P.R. Halmos, A Hilbert Space Problem Book (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  188. G. Halphén, Sur la série de Fourier. C. R. Acad. Sci. Paris 95, 1217–1219 (1882)

    MATH  Google Scholar 

  189. H. Hanche-Olsen, H. Holden, The Kolmogorov-Riesz compactness theorem. Expo. Math. 28, 385–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  190. H. Hankel, Untersuchungen über die unendlich oft oszillierenden und unstetigen Funktionen. Math. Ann. 20, 63–112 (1882)

    Article  MathSciNet  Google Scholar 

  191. G. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  192. A. Harnack, Die Elemente der Differential- und Integralrechnung (Teubner, Lepizig, 1881)

    MATH  Google Scholar 

  193. A. Harnack, Die allgemeinen Sätze über den Zusammenhang der Functionen einer reellen Variabelen mit ihren Ableitungen II. Math. Ann. 24, 217–252 (1884)

    Article  MathSciNet  Google Scholar 

  194. A. Harnack, Ueber den Inhalt von Punktmengen. Math. Ann. 25, 241–250 (1885)

    Article  MathSciNet  Google Scholar 

  195. F. Hausdorff, Grundzüge der Mengenlehre (Verlag von Veit, Leipzig, 1914); [197] II

    Google Scholar 

  196. F. Hausdorff, Dimension und äusseres Mass. Math. Ann. 79, 1–2, 157–179 (1918); [197] IV

    Google Scholar 

  197. F. Hausdorff, Gesammelte Werke I-VIII (Springer, Berlin, 2000)

    Google Scholar 

  198. T. Hawkins, Lebesgue’s Theory of Integration. Its Origins and Development (AMS Chelsea Publishing, Providence, 2001)

    Google Scholar 

  199. T.L. Heath (ed.), The Works of Archimedes (Cambridge University Press, Cambridge, 1897)

    Google Scholar 

  200. E. Heine, Die Elemente der Funktionenlehre. J. Reine Angew. Math. 74, 172–188 (1872)

    Article  MathSciNet  Google Scholar 

  201. E. Hellinger, O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 351–355 (1906)

    Google Scholar 

  202. E. Hellinger, O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen. Math. Ann. 69, 289–330 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  203. E. Hellinger, O. Toeplitz, Integralgleichungen une Gleichungen mit unendlichvielen Unbekannten. Encyklopädie der Mathematischen Wissenschaften, II C 13 (Teubner, Leipzig, 1927)

    Google Scholar 

  204. E. Helly, Über lineare Funktionaloperationen. Sitzber. Kais. Akad. Wiss. Math.-Naturwiss. Kl. Wien 121, 2, 265–297 (1912)

    MATH  Google Scholar 

  205. R. Henstock, The efficiency of convergence factors for functions of a continuous real variable. J. Lond. Math. Soc. 30, 273–286 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  206. R. Henstock, Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc. (3) 11, 402–418 (1961)

    Google Scholar 

  207. E. Hewitt, K. Stromberg, Real and Abstract Analysis (Springer, Berlin, 1965)

    Book  MATH  Google Scholar 

  208. D. Hilbert, Grundzüge einer allgemeinen Theorie der Integralgleichungen I. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 49–91 (1904)

    Google Scholar 

  209. D. Hilbert, Grundzüge einer allgemeinen Theorie der Integralgleichungen IV. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 157–227 (1906)

    Google Scholar 

  210. T.H. Hildebrandt, Necessary and sufficient conditions for the interchange of limit and summation in the case of sequences of infinite series of a certain type. Ann. Math. (2) 14, 81–83 (1912–1913)

    Google Scholar 

  211. T.H. Hildebrandt, On uniform limitedness of sets of functional operations. Bull. Am. Math. Soc. 29, 309–315 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  212. T.H. Hildebrandt, Über vollstetige, lineare Transformationen. Acta. Math. 51, 311–318 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  213. T.H. Hildebrandt, On bounded functional operations. Trans. Am. Math. Soc. 36, 868–875 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  214. E.W. Hobson, On some fundamental properties of Lebesgue integrals in a two-dimensional domain. Proc. Lond. Math. Soc. (2) 8, 22–39 (1910)

    Google Scholar 

  215. H. Hochstadt, Eduard Helly, father of the Hahn-Banach theorem. Math. Intell. 2 (3), 123–125 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  216. R.B. Holmes, Geometric Functional Analysis and Its Applications (Springer, Berlin, 1975)

    Book  MATH  Google Scholar 

  217. O. Hölder, Ueber einen Mittelwerthsatz. Götting. Nachr. 38–47 (1889)

    Google Scholar 

  218. L. Hörmander, Linear Differential Operators (Springer, Berlin, 1963)

    Book  MATH  Google Scholar 

  219. L. Hörmander, The Analysis of Linear Partial Differential Operators I (Springer, Berlin, 1983)

    MATH  Google Scholar 

  220. R.A. Hunt, On the convergence of Fourier series orthogonal expansions and their continuous analogues, in Proceedings of the Conference at Edwardsville 1967 (Southern Illinois University Press, Carbondale, IL, 1968), pp. 237–255

    Google Scholar 

  221. D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Dissertation, Göttingen, (1911)

    MATH  Google Scholar 

  222. D. Jackson, On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc. 13, 491–515 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  223. D. Jackson, The Theory of Approximation, vol. 11 (American Mathematical Society, Colloquium Publications, Providence, RI, 1930)

    MATH  Google Scholar 

  224. C.G.J. Jacobi, De determinantibus functionalibus. J. Reine Angew. Math. 22, 319–359 (1841); [225] III, 393–438

    Google Scholar 

  225. C.G.J. Jacobi, Gesammelte Werke I-VIII (G. Reimer, Berlin, 1881–1891)

    Google Scholar 

  226. R.C. James, Characterizations of reflexivity. Stud. Math. 23, 205–216 (1964)

    MathSciNet  MATH  Google Scholar 

  227. V. Jarník, Bolzano and the Foundations of Mathematical Analysis (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981)

    MATH  Google Scholar 

  228. I. Joó, V. Komornik, On the equiconvergence of expansions by Riesz bases formed by eigenfunctions of the Schrödinger operator. Acta Sci. Math. (Szeged) 46, 357–375 (1983)

    MathSciNet  MATH  Google Scholar 

  229. C. Jordan, Sur la série de Fourier. C. R. Acad. Sci. Paris 92, 228–230 (1881); [232] IV, 393–395

    Google Scholar 

  230. C. Jordan, Cours d’analyse de l’École Polytechnique I-III (Gauthier-Villars, Paris, 1883)

    MATH  Google Scholar 

  231. C. Jordan, Remarques sur les intégrales définies. J. Math. (4) 8, 69–99 (1892); [232] IV, 427–457

    Google Scholar 

  232. C. Jordan, Oeuvres I-IV (Gauthier-Villars, Paris, 1961–1964)

    Google Scholar 

  233. P. Jordan, J. von Neumann, On inner products in linear, metric spaces. Ann. Math. (2) 36 (3), 719–723 (1935)

    Google Scholar 

  234. M.I. Kadec, On strong and weak convergence (in Russian). Dokl. Akad. Nauk SSSR 122, 13–16 (1958)

    MathSciNet  Google Scholar 

  235. M.I. Kadec, On the connection between weak and strong convergence (in Ukrainian). Dopovidi. Akad. Ukraïn RSR 9, 949–952 (1959)

    MathSciNet  Google Scholar 

  236. M.I. Kadec, Spaces isomorphic to a locally uniformly convex space (in Russian). Izv. Vysš. Učebn. Zaved. Matematika 13 (6), 51–57 (1959)

    MathSciNet  Google Scholar 

  237. J.-P. Kahane, Fourier Series; see J.-P. Kahane, P.-G. Lemarié-Rieusset, Fourier Series and Wavelets (Gordon and Breach, New York, 1995)

    Google Scholar 

  238. J.-P. Kahane, Y. Katznelson, Sur les ensembles de divergence des séries trigonométriques. Stud. Math. 26, 305–306 (1966)

    MathSciNet  MATH  Google Scholar 

  239. S. Kakutani, Weak topology and regularity of Banach spaces. Proc. Imp. Acad. Tokyo 15, 169–173 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  240. S. Kakutani, Concrete representations of abstract (M)-spaces. (A characterization of the space of continuous functions). Ann. Math. (2) 42, 994–1024 (1941)

    Google Scholar 

  241. N.J. Kalton, An F-space with trivial dual where the Krein–Milman theorem holds. Isr. J. Math. 36, 41–50 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  242. N.J. Kalton, N. Peck, A re-examination of the Roberts example of a compact convex set without extreme points. Math. Ann. 253, 89–101 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  243. L.V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd edn. (Pergamon Press, Oxford, 1982)

    MATH  Google Scholar 

  244. W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. University of Chicago, Chicago (1939)

    Google Scholar 

  245. Y. Katznelson, An Introduction to Harmonic Analysis (Dover, New York, 1976)

    MATH  Google Scholar 

  246. J. Kelley, Banach spaces with the extension property. Trans. Am. Math. Soc. 72, 323–326 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  247. J. Kelley, General Topology (van Nostrand, New York, 1954)

    MATH  Google Scholar 

  248. J. Kindler, A simple proof of the Daniell-Stone representation theorem. Am. Math. Mon. 90, 396–397 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  249. A.A. Kirillov, A.D. Gvisiani, Theorems and Problems in Functional Analysis (Springer, New York, 1982)

    Book  Google Scholar 

  250. V.L. Klee, Jr., Convex sets in linear spaces I-II. Duke Math. J. 18, 443–466, 875–883 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  251. A.N. Kolmogorov, Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Nachr. Ges. Wiss. Göttingen 9, 60–63 (1931); English translation: On the compactness of sets of functions in the case of convergence in the mean, in V.M. Tikhomirov (ed.), Selected Works of A.N. Kolmogorov, vol. I (Kluwer, Dordrecht, 1991), pp. 147–150

    Google Scholar 

  252. A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933); English translation: Foundations of the Theory of Probability (Chelsea, New York, 1956)

    Google Scholar 

  253. A. Kolmogorov, Zur Normierbarkeit eines allgemeinen topologischen Raumes. Stud. Math. 5, 29–33 (1934)

    MATH  Google Scholar 

  254. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999)

    MATH  Google Scholar 

  255. V. Komornik, An equiconvergence theorem for the Schrödinger operator. Acta Math. Hungar. 44, 101–114 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  256. V. Komornik, Sur l’équiconvergence des séries orthogonales et biorthogonales correspondant aux fonctions propres des opérateurs différentiels linéaires. C. R. Acad. Sci. Paris Sér. I Math. 299, 217–219 (1984)

    MathSciNet  Google Scholar 

  257. V. Komornik, On the equiconvergence of eigenfunction expansions associated with ordinary linear differential operators. Acta Math. Hungar. 47, 261–280 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  258. V. Komornik, A simple proof of Farkas’ lemma. Am. Math. Mon. 105, 949–950 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  259. V. Komornik, D. Kong, W. Li, Hausdorff dimension of univoque sets and Devil’s staircase, arxiv: 1503.00475v1 [math. NT]

    Google Scholar 

  260. V. Komornik, P. Loreti, On the topological structure of univoque sets. J. Number Theory 122, 157–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  261. V. Komornik, M. Yamamoto, On the determination of point sources. Inverse Prob. 18, 319–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  262. V. Komornik, M. Yamamoto, Estimation of point sources and applications to inverse problems. Inverse Prob. 21, 2051–2070 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  263. P.P. Korovkin, On the convergence of positive linear operators in the space of continuous functions (in Russian). Dokl. Akad. Nauk. SSSR 90, 961–964 (1953)

    MathSciNet  Google Scholar 

  264. P.P. Korovkin, Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics, vol. III (Gordon and Breach Publishers, Inc/Hindustan Publishing Corp., New York/Delhi, 1960)

    Google Scholar 

  265. C.A. Kottman, Subsets of the unit ball that are separated by more than one. Stud. Math. 53, 15–27 (1975)

    MathSciNet  MATH  Google Scholar 

  266. G. Köthe, Topological Vector Spaces I-II (Springer, Berlin, 1969, 1979)

    Google Scholar 

  267. M.A. Krasnoselskii, Ya.B. Rutitskii, Convex Functions and Orlicz Spaces (P. Noordhoff Ltd., Groningen, 1961)

    Google Scholar 

  268. M.G. Krein, S.G. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space. Dokl. Akad. Nauk. SSSR 27, 429–430 (1940)

    MathSciNet  MATH  Google Scholar 

  269. M. Krein, D. Milman, On extreme points of regularly convex sets. Stud. Math. 9, 133–138 (1940)

    MathSciNet  MATH  Google Scholar 

  270. P. Krée, Intégration et théorie de la mesure. Une approche géométrique (Ellipses, Paris, 1997)

    Google Scholar 

  271. H.W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of 2nd Berkeley Symposium. (University of California Press, Berkeley, 1951), pp. 481–492

    Google Scholar 

  272. K. Kuratowski, La propriété de Baire dans les espaces métriques. Fund. Math. 16, 390–394 (1930)

    MATH  Google Scholar 

  273. K. Kuratowski, Quelques problèmes concernant les espaces métriques non-séparables. Fund. Math. 25, 534–545 (1935)

    MATH  Google Scholar 

  274. J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter (in Russian). Czechoslov. Math. J. 7 (82), 418–449 (1957)

    MathSciNet  MATH  Google Scholar 

  275. J. Kürschák, Analízis és analitikus geometria [Analysis and Analytic Geometry] (Budapest, 1920).

    Google Scholar 

  276. H.E. Lacey, The Hamel dimension of any infinite-dimensional separable Banach space is c. Am. Math. Mon. 80, 298 (1973)

    Google Scholar 

  277. M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem. J. Reine Angew. Math. 404, 77–117 (1990)

    MathSciNet  MATH  Google Scholar 

  278. M. Laczkovich, Conjecture and Proof (Typotex, Budapest, 1998)

    MATH  Google Scholar 

  279. J.L. Lagrange, Solution de différents problèmes de calcul intégral. Miscellanea Taurinensia III, (1762–1765); [281] I, 471–668

    Google Scholar 

  280. J.L. Lagrange, Sur l’attraction des sphéroïdes elliptiques. Nouv. Mém. Acad. Royale Berlin (1773); [281] III, 619–649

    Google Scholar 

  281. J.L. Lagrange, Oeuvres I-XIV (Gauthier-Villars, Paris, 1867–1882)

    Google Scholar 

  282. E. Landau, Über einen Konvergenzsatz. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 25–27 (1907); [284] III, 273–275

    Google Scholar 

  283. E. Landau, Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion. Rend. Circ. Mat. Palermo 25, 337–345 (1908); [284] III, 402–410

    Google Scholar 

  284. E. Landau, Collected Works I-VIII (Thales, Essen, 1986)

    Google Scholar 

  285. R. Larsen, Functional Analysis. An Introduction (Marcel Dekker, New York, 1973)

    Google Scholar 

  286. H. Lebesgue, Sur l’approximation des fonctions. Bull. Sci. Math. 22, 10 p. (1898); [298] III, 11–20

    Google Scholar 

  287. H. Lebesgue, Sur une généralisation de l’intégrale définie. C. R. Acad. Sci. Paris 132, 1025–1027 (1901); [298] I, 197–199

    Google Scholar 

  288. H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl. (3) 7, 231–359 (1902); [298] I, 201–331

    Google Scholar 

  289. H. Lebesgue, Sur les séries trigonométriques. Ann. Éc. Norm. (3) 20, 453–485 (1903); [298] III, 27–59

    Google Scholar 

  290. H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives (Gauthier-Villars, Paris, 1904); [298] II, 11–154

    Google Scholar 

  291. H. Lebesgue, Sur la divergence et la convergence non-uniforme des séries de Fourier. C. R. Acad. Sci. Paris 141, 875–877 (1905)

    MATH  Google Scholar 

  292. H. Lebesgue, Leçons sur les séries trigonométriques (Gauthier-Villars, Paris, 1906)

    MATH  Google Scholar 

  293. H. Lebesgue, Sur les fonctions dérivées. Atti Accad. Lincei Rend. 15, 3–8 (1906); [298] II, 159–164

    Google Scholar 

  294. H. Lebesgue, Sur la méthode de M. Goursat pour la résolution de l’équation de Fredholm. Bull. Soc. Math. France 36, 3–19 (1908); [298] III, 239–254

    Google Scholar 

  295. H. Lebesgue, Sur l’intégration des fonctions discontinues. Ann. Éc. Norm. (3) 27, 361–450 (1910); [298] II, 185–274

    Google Scholar 

  296. H. Lebesgue, Notice sur les travaux scientifiques de M. Henri Lebesgue (Impr. E. Privat, Toulouse, 1922); [298] I, 97–175

    Google Scholar 

  297. H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives, 2nd edn. (Paris, Gauthier-Villars, 1928)

    MATH  Google Scholar 

  298. H. Lebesgue, Oeuvres scientifiques I-V (Université de Genève, Genève, 1972–1973)

    Google Scholar 

  299. J. Le Roux, Sur les intégrales des équations linéaires aux dérivées partielles du 2e ordre à 2 variables indépendantes. Ann. Éc. Norm. (3) 12, 227–316 (1895)

    Google Scholar 

  300. B. Levi, Sul principio di Dirichlet. Rend. Circ. Mat. Palermo 22, 293–360 (1906)

    Article  MATH  Google Scholar 

  301. B. Levi, Sopra l’integrazione delle serie. Rend. Instituto Lombardo Sci. Lett. (2) 39, 775–780 (1906)

    Google Scholar 

  302. J.W. Lewin, A truly elementary approach to the bounded convergence theorem. Am. Math. Mon. 93 (5), 395–397 (1986)

    Article  MathSciNet  Google Scholar 

  303. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II: Function Spaces (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  304. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod–Gauthier-Villars, Paris, 1969)

    MATH  Google Scholar 

  305. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications I-III (Dunod, Paris, 1968–1970)

    Google Scholar 

  306. J. Liouville, Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assoujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. J. Math. Pures Appl. 2, 418–437 (1837)

    Google Scholar 

  307. J.S. Lipiński, Une simple démonstration du théorème sur la dérivée d’une fonction de sauts. Colloq. Math. 8, 251–255 (1961)

    MathSciNet  MATH  Google Scholar 

  308. R. Lipschitz, De explicatione per series trigonometricas instituenda functionum unius variabilis arbitrariarum, etc. J. Reine Angew. Math. 63 (2), 296–308 (1864)

    Article  MathSciNet  Google Scholar 

  309. L.A. Ljusternik, W.I. Sobolev, Elemente der Funtionalanalysis (Akademie-Verlag, Berlin, 1979)

    Google Scholar 

  310. S. Lozinski, On the convergence and summability of Fourier series and interpolation processes. Mat. Sb. N. S. 14 (56), 175–268 (1944)

    MathSciNet  MATH  Google Scholar 

  311. S. Lozinski, On a class of linear operators (in Russian). Dokl. Akad. Nauk SSSR 61, 193–196 (1948)

    Google Scholar 

  312. H. Löwig, Komplexe euklidische Räume von beliebiger endlicher oder unendlicher Dimensionszahl. Acta Sci. Math. Szeged 7, 1–33 (1934)

    MATH  Google Scholar 

  313. N. Lusin, Sur la convergence des séries trigonométriques de Fourier. C. R. Acad. Sci. Paris 156, 1655–1658 (1913)

    MATH  Google Scholar 

  314. J. Marcinkiewicz, Quelques remarques sur l’interpolation. Acta Sci. Math. (Szeged) 8, 127–130 (1937)

    MATH  Google Scholar 

  315. A. Markov, On mean values and exterior densities. Mat. Sb. N. S. 4 (46), 165–190 (1938)

    Google Scholar 

  316. R.D. Mauldin (ed.), The Scottish Book: Mathematics from the Scottish Café (Birkhäuser, Boston, 1981)

    MATH  Google Scholar 

  317. S. Mazur, Über konvexe Mengen in linearen normierten Räumen. Stud. Math. 4, 70–84 (1933)

    MATH  Google Scholar 

  318. S. Mazur, On the generalized limit of bounded sequences. Colloq. Math. 2, 173–175 (1951)

    MathSciNet  MATH  Google Scholar 

  319. J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)

    Article  MathSciNet  Google Scholar 

  320. E.J. McShane, Linear functionals on certain Banach spaces. Proc. Am. Math. Soc. 1, 402–408 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  321. R.E. Megginson, An Introduction to Banach Space Theory (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  322. D.P. Milman, On some criteria for the regularity of spaces of the type (B). C. R. (Doklady) Acad. Sci. URSS (N. S.) 20, 243–246 (1938)

    Google Scholar 

  323. H. Minkowski, Geometrie der Zahlen I (Teubner, Leipzig, 1896)

    MATH  Google Scholar 

  324. H. Minkowski, Geometrie der Zahlen (Teubner, Leipzig, 1910)

    MATH  Google Scholar 

  325. H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, [326] II, 131–229

    Google Scholar 

  326. H. Minkowski, Gesammelte Abhandlungen I-II (Teubner, Leipzig, 1911)

    MATH  Google Scholar 

  327. A.F. Monna, Functional Analysis in Historical Perspective (Oosthoek, Utrecht, 1973)

    MATH  Google Scholar 

  328. F.J. Murray, On complementary manifolds and projections in spaces L p and l p . Trans. Am. Math. Soc. 41, 138–152 (1937)

    MathSciNet  MATH  Google Scholar 

  329. Ch.H. Müntz, Über den Approximationssatz von Weierstrass. Mathematische Abhandlungen H.A. Schwarz gewidmet, (Springer, Berlin, 1914), pp. 303–312

    Google Scholar 

  330. L. Nachbin, A theorem of Hahn-Banach type for linear transformations. Trans. Am. Math. Soc. 68, 28–46 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  331. L. Narici, E. Beckenstein, Topological Vector Spaces (Marcel Dekker, New York, 1985)

    MATH  Google Scholar 

  332. I.P. Natanson, Theory of functions of a real variable I-II (Frederick Ungar Publishing, New York, 1955, 1961)

    Google Scholar 

  333. I.P. Natanson, Constructive Function Theory I-III (Ungar, New York, 1964)

    MATH  Google Scholar 

  334. J. von Neumann, Mathematische Begründung der Quantenmechanik. Nachr. Gesell. Wiss. Göttingen. Math.-Phys. Kl., 1–57 (1927); [340] I, 151–207

    Google Scholar 

  335. J. von Neumann, Zur allgemeinen Theorie des Masses. Fund. Math. 13, 73–116 (1929); [340] I, 599–643

    Google Scholar 

  336. J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der Normalen Operatoren. Math. Ann. 102, 370–427 (1929–1930); [340] II, 86–143

    Google Scholar 

  337. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  338. J. von Neumann, On complete topological spaces. Trans. Am. Math. Soc. 37, 1–20 (1935); [340] II, 508–527

    Google Scholar 

  339. J. von Neumann, On rings of operators III. Ann. Math. 41, 94–161 (1940); [340] III, 161–228

    Google Scholar 

  340. J. von Neumann, Collected works I-VI (Pergamon Press, Oxford, 1972–1979).

    Google Scholar 

  341. M.A. Neumark, Normierte Algebren (VEB Deutscher Verlag der Wissenschaften, Berlin, 1959)

    MATH  Google Scholar 

  342. O. Nikodým, Sur une généralisation des intégrales de M. Radon. Fund. Math. 15, 131–179 (1930)

    MATH  Google Scholar 

  343. O. Nikodým, Sur le principe du minimum dans le problème de Dirichlet. Ann. Soc. Polon. Math. 10, 120–121 (1931)

    MATH  Google Scholar 

  344. O. Nikodým, Sur le principe du minimum. Mathematica (Cluj) 9, 110–128 (1935)

    MATH  Google Scholar 

  345. W.P. Novinger, Mean convergence in L p spaces. Proc. Am. Math. Soc. 34 (2), 627–628 (1972)

    MathSciNet  MATH  Google Scholar 

  346. V.F. Nikolaev, On the question of approximation of continuous functions by means of polynomials (in Russian). Dokl. Akad. Nauk SSSR 61, 201–204 (1948)

    MathSciNet  Google Scholar 

  347. W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Polon. Sci. A (8/9), 207–220 (1932)

    Google Scholar 

  348. W. Orlicz, Über Räume (L M), Bull. Int. Acad. Polon. Sci. A, 93–107 (1936)

    Google Scholar 

  349. W. Orlicz, Linear Functional Analysis, Series in Real Analysis, vol. 4 (World Scientific Publishing, River Edge, NJ, 1992)

    MATH  Google Scholar 

  350. W. Osgood, Non uniform convergence and the integration of series term by term. Am. J. Math. 19, 155–190 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  351. J.C. Oxtoby, Measure and Category (Springer, New York, 1971)

    Book  MATH  Google Scholar 

  352. M.-A. Parseval, Mémoire sur les séries et sur l’intégration complète d’une équation aux différences partielles linéaires du second ordre, à coefficients constants. Mém. prés. par divers savants, Acad. des Sciences, Paris, (1) 1, 638–648 (1806)

    Google Scholar 

  353. G. Peano, Applicazioni geometriche del calcolo infinitesimale (Bocca, Torino, 1887)

    MATH  Google Scholar 

  354. G. Peano, Sur une courbe qui remplit toute une aire. Math. Ann. 36, 157–160 (1890)

    Article  MathSciNet  Google Scholar 

  355. R.R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation. Trans. Am. Math. Soc. 95, 238–255 (1960)

    MathSciNet  MATH  Google Scholar 

  356. O. Perron, Über den Integralbegriff. Sitzber. Heidelberg Akad. Wiss., Math. Naturw. Klasse Abt. A 16, 1–16 (1914)

    Google Scholar 

  357. B.J. Pettis, A note on regular Banach spaces. Bull. Am. Math. Soc. 44, 420–428 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  358. B.J. Pettis, A proof that every uniformly convex space is reflexive. Duke Math. J. 5, 249–253 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  359. R.R. Phelps, Lectures on Choquet’s Theorem (Van Nostrand, New York, 1966)

    MATH  Google Scholar 

  360. J.-P. Pier, Intégration et mesure 1900–1950; [361], 517–564

    Google Scholar 

  361. J.-P. Pier (ed.), Development of Mathematics 1900–1950 (Birkhäuser, Basel, 1994)

    MATH  Google Scholar 

  362. J.-P. Pier (ed.), Development of Mathematics 1950–2000 (Birkhäuser, Basel, 2000)

    MATH  Google Scholar 

  363. H. Poincaré, Science and Hypothesis (The Walter Scott Publishing, New York, 1905)

    MATH  Google Scholar 

  364. L.S. Pontryagin, Topological Groups, 3rd edn., Selected Works, vol. 2 (Gordon & Breach Science, New York, 1986)

    Google Scholar 

  365. A. Pringsheim, Grundlagen der allgemeinen Funktionenlehre, Encyklopädie der mathematischen Wissenschaften, II-1 (Teubner, Leipzig, 1899); French translation and adaptation: A. Pringsheim, J. Molk, Principes fondamentaux de la théorie des fonctions, Encyclopédie des sciences mathématiques, II-1, (Gauthier-Villars/Teubner, Paris/Leipzig, 1909)

    Google Scholar 

  366. J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitsber. Akad. Wiss. Wien 122, Abt. II a, 1295–1438 (1913)

    Google Scholar 

  367. M. Reed, B. Simon, Methods of Modern Mathematical Physics I-IV (Academic Press, New York, 1972–1979)

    Google Scholar 

  368. F. Rellich, Spektraltheorie in nichtseparabeln Räumen. Math. Ann. 110, 342–356 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  369. I. Richards, On the Fourier inversion theorem for R 1. Proc. Amer. Math. Soc. 19 (1), 145 (1968)

    Google Scholar 

  370. B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inaugural dissertation, Göttingen, 1851; [372], 3–45; French translation: Principes fondamentaux pour une théorie générale des fonctions d’une grandeur variable complexe, Dissertation inaugurale de Riemann, Göttingen, 1851; [372], 1–56

    Google Scholar 

  371. B. Riemann, Ueber die Darstellberkeit einer Function durch eine trigonometrische Reihe, Habilitationsschrift, 1854, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13 (1867); [372], 213–251. French translation: Sur la possibilité de représenter une fonction par une série trigonométrique, Bull. des Sciences Math. et Astron. (1) 5 (1873); [372], 225–272.

    Google Scholar 

  372. B. Riemann, Werke (Teubner, Leipzig, 1876); French translation: Oeuvres mathématiques de Riemann (Gauthier-Villars, Paris, 1898). English translation: Collected Works of Bernhard Riemann (Dover Publications, New York, 1953)

    Google Scholar 

  373. F. Riesz, Sur les systèmes orthogonaux de fonctions. C. R. Acad. Sci. Paris 144, 615–619 (1907); [392] I, 378–381

    Google Scholar 

  374. F. Riesz, Sur les systèmes orthogonaux de fonctions et l’équation de Fredholm. C. R. Acad. Sci. Paris 144, 734–736 (1907); [392] I, 382–385

    Google Scholar 

  375. F. Riesz, Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411 (1907); [392] I, 386–388

    Google Scholar 

  376. F. Riesz, Über orthogonale Funktionensysteme. Göttinger Nachr. 116–122 (1907); [392] I, 389–395

    Google Scholar 

  377. F. Riesz, Sur les suites de fonctions mesurables. C. R. Acad. Sci. Paris 148, 1303–1305 (1909); [392] I, 396–397, 405–406

    Google Scholar 

  378. F. Riesz, Sur les opérations fonctionnelles linéaires à une. C. R. Acad. Sci. Paris 149, 974–977 (1909); [392] I, 400–402

    Google Scholar 

  379. F. Riesz, Sur certains systèmes d’équations fonctionnelles et l’approximation des fonctions continues. C. R. Acad. Sci. Paris 150, 674–677 (1910); [392] I, 403–404, 398–399

    Google Scholar 

  380. F. Riesz, Untersuchungen über Systeme integrierbar Funktionen. Math. Ann. 69, 449–497 (1910); [392] I, 441–489

    Google Scholar 

  381. F. Riesz, Integrálható függvények sorozatai [Sequences of integrable functions]. Matematikai és Physikai Lapok 19, 165–182, 228–243 (1910); [392] I, 407–440

    Google Scholar 

  382. F. Riesz, Les systèmes d’équations linéaires à une infinité d’inconnues (Gauthier-Villars, Paris, 1913); [392] II, 829–1016

    Google Scholar 

  383. F. Riesz, Lineáris függvényegyenletekről [On linear functional equations]. Math. Term. Tud. Ért. 35, 544–579 (1917); [392] II, 1017–1052; German translation: Über lineare Funktionalgleichungen. Acta Math. 41, 71–98 (1918); [392] II, 1053–1080

    Google Scholar 

  384. F. Riesz, Su alcune disuguglianze. Boll. Unione Mat. Ital. 7, 77–79 (1928); [392] I, 519–521

    Google Scholar 

  385. F. Riesz, Sur la convergence en moyenne I-II. Acta Sci. Math. (Szeged) 4, 58–64, 182–185 (1928–1929); [392] I, 512–518, 522–525

    Google Scholar 

  386. F. Riesz, A monoton függvények differenciálhatóságáról [On the differentiability of monotone functions]. Mat. Fiz. Lapok 38, 125–131 (1931); [392] I, 243–249

    Google Scholar 

  387. F. Riesz, Sur l’existence de la dérivée des fonctions monotones et sur quelques problèmes qui s’y rattachent. Acta Sci. Math. (Szeged) 5, 208–221 (1930–32); [392] I, 250–263

    Google Scholar 

  388. M. Riesz, Sur les ensembles compacts de fonctions sommables. Acta Sci. Math. Szeged 6, 136–142 (1933)

    MATH  Google Scholar 

  389. F. Riesz, Zur Theorie der Hilbertschen Raumes. Acta Sci. Math., 34–38 (1934–1935); [392] II, 1150–1154

    Google Scholar 

  390. F. Riesz, L’évolution de la notion d’intégrale depuis Lebesgue. Ann. Inst. Fourier 1, 29–42 (1949); [392] I, 327–340

    Google Scholar 

  391. F. Riesz, Nullahalmazok és szerepük az analízisben. Az I. Magyar Mat. Kongr. Közl., 204–214 (1952); [392] I, 353–362; French translation: Les ensembles de mesure nulle et leur rôle dans l’analyse, Az I. Magyar Mat. Kongr. Közl., English translation: Proceedings of the First Hungarian Mathematical Congress, 214–224 (1952); [392] I, 363–372

    Google Scholar 

  392. F. Riesz, Oeuvres complètes I-II, ed. by Á. Császár (Akadémiai Kiadó, Budapest, 1960)

    Google Scholar 

  393. F. Riesz, B. Sz.-Nagy, Über Kontraktionen des Hilbertschen Raumes [German]. Acta Univ. Szeged. Sect. Sci. Math. 10, 202–205 (1943)

    Google Scholar 

  394. F. Riesz, B. Sz.-Nagy, Leçons d’analyse fonctionnelle (Akadémiai Kiadó, Budapest, 1952); English translation: Functional Analysis, (Dover, New York, 1990)

    Google Scholar 

  395. J. Roberts, Pathological compact convex sets in the spaces L p , 0 < p < 1, The Altgeld Book 1975/76, University of Illinois

    Google Scholar 

  396. J. Roberts, A compact convex set without extreme points. Stud. Math. 60, 255–266 (1977)

    MATH  Google Scholar 

  397. A.P. Robertson, W. Robertson, Topological Vector Spaces (Cambridge University Press, 1973)

    MATH  Google Scholar 

  398. R.T. Rockafellar, Conves Analysis (Princeton University Press, New Jersey, 1970)

    Book  Google Scholar 

  399. L.J. Rogers, An extension of a certain theorem in inequalities. Messenger Math. 17, 145–150 (1888)

    Google Scholar 

  400. S. Rolewicz, Metric Linear Spaces (Państwowe Wydawnictwo Naukowe, Varsovie, 1972)

    MATH  Google Scholar 

  401. L.A. Rubel, Differentiability of monotonic functions. Colloq. Math. 10, 277–279 (1963)

    MathSciNet  MATH  Google Scholar 

  402. W. Rudin, Fourier Analysis on Groups (Wiley, New York, 1962)

    MATH  Google Scholar 

  403. W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw-Hill, New York, 1976)

    MATH  Google Scholar 

  404. W. Rudin, Well-distributed measurable sets. Am. Math. Mon. 90, 41–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  405. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  406. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991)

    MATH  Google Scholar 

  407. S. Russ, Bolzano’s analytic programme. Math. Intell. 14 (3), 45–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  408. S. Saks, On some functionals. Trans. Am. Math. Soc. 35 (2), 549–556 and 35 (4), 965–970 (1933)

    Google Scholar 

  409. S. Saks, Theory of The Integral (Hafner, New York, 1937)

    MATH  Google Scholar 

  410. S. Saks, Integration in abstract metric spaces. Duke Math. J. 4, 408–411 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  411. H. Schaefer, Topological vector spaces, Second edition with M.P. Wolff, 1st edn. (Springer, Berlin, 1966), 2nd edn. (1999)

    Google Scholar 

  412. J. Schauder, Zur Theorie stetiger Abbildungen in Funktionenräumen. Math. Z. 26, 47–65 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  413. J. Schauder, Über die Umkehrung linearer, stetiger Funktionaloperationen. Stud. Math. 2, 1–6 (1930)

    MathSciNet  MATH  Google Scholar 

  414. J. Schauder, Über lineare, vollstetige Funktionaloperationen. Stud. Math. 2, 183–196 (1930)

    MATH  Google Scholar 

  415. E. Schmidt, Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  416. E. Schmidt, Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten. Rend. Circ. Mat. Palermo 25, 53–77 (1908)

    Article  Google Scholar 

  417. I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44 (8), 519 (1938)

    Google Scholar 

  418. I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen. J. Reine Angew. Math. 151, 79–111 (1920)

    MathSciNet  MATH  Google Scholar 

  419. J.T. Schwartz, A note on the space L p . Proc. Am. Math. Soc. 2, 270–275 (1951)

    MATH  Google Scholar 

  420. L. Schwartz, Théorie des distributions (Hermann, Paris, 1966)

    MATH  Google Scholar 

  421. Z. Semadeni, Banach Spaces of Continuous Functions I (Pánstwowe Wydawnictvo Naukowe, Warszawa, 1971)

    MATH  Google Scholar 

  422. A. Shidfar, K. Sabetfakhiri, On the continuity of Van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)

    Article  MATH  Google Scholar 

  423. H.J.S. Smith, On the integration of discontinuous functions. Proc. Lond. Math. Soc. 6, 140–153 (1875)

    MathSciNet  MATH  Google Scholar 

  424. V.L. Šmulian, Linear topological spaces and their connection with the Banach spaces. Doklady Akad. Nauk SSSR (N. S.) 22, 471–473 (1939)

    MATH  Google Scholar 

  425. V.L. Šmulian, Über lineare topologische Räume. Mat. Sb. N. S. (7) 49, 425–448 (1940)

    Google Scholar 

  426. S. Sobolev, Cauchy problem in functional spaces. Dokl. Akad. Nauk SSSR 3, 291–294 (1935) (in Russian)

    MATH  Google Scholar 

  427. S. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. 1 (43), 39–72 (1936)

    MATH  Google Scholar 

  428. S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (American Mathematical Society, Providence RI, 1991)

    MATH  Google Scholar 

  429. R. Solovay, A model of set theory where every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  430. G.A. Soukhomlinov, Über Fortsetzung von linearen Funktionalen in linearen komplexen Räumen und linearen Quaternionräumen (in Russian, with a German abstract). Mat. Sb. N. S. (3) 4, 355–358 (1938)

    Google Scholar 

  431. L.A. Steen, Highlights in the history of spectral theory, Am. Math. Mon. 80, 359–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  432. H. Steinhaus, Additive und stetige Funktionaloperationen. Math. Z. 5, 186–221 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  433. V.A. Steklov, Sur la théorie de fermeture des systèmes de fonctions orthogonales dépendant d’un nombre quelconque de variables. Petersb. Denkschr. (8) 30, 4, 1–86 (1911)

    Google Scholar 

  434. V.A. Steklov, Théorème de fermeture pour les polynômes de Tchebychev–Laguerre. Izv. Ross. Akad. Nauk Ser. Mat. (6) 10, 633–642 (1916)

    Google Scholar 

  435. T.J. Stieltjes, Recherches sur les fractions continues. Ann. Toulouse 8, 1–122 (1894), 9, 1–47 (1895); [436] II, 402–566

    Google Scholar 

  436. T.J. Stieltjes, Oeuvres complètes I-II (Springer, Berlin, 1993)

    Google Scholar 

  437. O. Stolz, Ueber einen zu einer unendlichen Punktmenge gehörigen Grenzwerth. Math. Ann. 23, 152–156 (1884)

    Article  MathSciNet  Google Scholar 

  438. O. Stolz, Die gleichmässige Convergenz von Functionen mehrerer Veränderlichen zu den dadurch sich ergebenden Grenzwerthen, dass einige derselben constanten Werthen sich nähern. Math. Ann. 26, 83–96 (1886)

    Article  MathSciNet  Google Scholar 

  439. M.H. Stone, Linear Transformations in Hilbert Space (Amer. Math. Soc., New York, 1932)

    MATH  Google Scholar 

  440. M.H. Stone, Application of the theory of Boolean rings to general topology, Trans. Am. Math. Soc. 41, 325–481 (1937)

    Article  Google Scholar 

  441. M.H. Stone, The generalized Weierstrass approximation theorem. Math. Mag. 11, 167–184, 237–254 (1947/48)

    Google Scholar 

  442. R.S. Strichartz, How to make wavelets. Am. Math. Mon. 100, 539–556 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  443. P.G. Szabó, A matematikus Riesz testvérek. Válogatás Riesz Frigyes és Riesz Marcel levelezéséből [The Mathematician Riesz Brothers. Selected letters from the correspondence between Frederic and Marcel Riesz] (Magyar Tudománytörténeti Intézet, Budapest, 2010)

    Google Scholar 

  444. P.G. Szabó, Kiváló tisztelettel: Fejér Lipót és a Riesz testvérek levelezése magyar matematikusokkal [Respectfully: Correspondence of Leopold Fejér and the Riesz Brothers with Hungarian Mathematicians] (Magyar Tudománytörténeti Intézet, Budapest, 2011)

    Google Scholar 

  445. O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. Math. Ann. 77, 482–496 (1915–1916)

    Google Scholar 

  446. G. Szegő, Orthogonal Polynomials (American Mathematical Society, Providence, 1975)

    MATH  Google Scholar 

  447. B. Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes (Springer, Berlin, 1942)

    Google Scholar 

  448. B. Sz.-Nagy, Introduction to Real Functions and Orthogonal Expansions (Oxford University Press, New York, 1965)

    Google Scholar 

  449. T. Takagi, A simple example of a continuous function without derivative. Proc. Phys. Math. Japan 1, 176–177 (1903)

    MATH  Google Scholar 

  450. A.E. Taylor, The extension of linear functionals. Duke Math. J. 5, 538–547 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  451. S.A. Telyakovsky, Collection of Problems on the Theory of Real Functions (in Russian) (Nauka, Moszkva, 1980)

    Google Scholar 

  452. K.J. Thomae, Ueber bestimmte integrale. Z. Math. Phys. 23, 67–68 (1878)

    Google Scholar 

  453. H. Tietze, Über Funktionen, die auf einer abgeschlossenen Menge stetig sind. J. Reine Angew. Math. 145, 9–14 (1910)

    MathSciNet  MATH  Google Scholar 

  454. A. Tychonoff, Ein Fixpunktsatz. Math. Ann. 111, 767–776 (1935)

    Article  MathSciNet  Google Scholar 

  455. A. Toepler, Bemerkenswerte Eigenschaften der periodischen Reihen. Wiener Akad. Anz. 13, 205–209 (1876)

    Google Scholar 

  456. O. Toeplitz, Das algebrischen Analogen zu einem Satze von Fejér. Math. Z. 2, 187–197 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  457. L. Tonelli, Sull’integrazione per parti. Atti Accad. Naz. Lincei (5), 18, 246–253 (1909)

    Google Scholar 

  458. V. Trénoguine, B. Pissarevski, T. Soboléva, Problèmes et exercices d’analyse fonctionnelle (Mir, Moscou, 1987)

    Google Scholar 

  459. N.-K. Tsing, Infinite-dimensional Banach spaces must have uncountable basis—an elementary proof. Am. Math. Mon. 91 (8), 505–506 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  460. J.W. Tukey, Some notes on the separation of convex sets. Port. Math. 3, 95–102 (1942)

    MathSciNet  MATH  Google Scholar 

  461. P. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen. Math. Ann. 94, 262–295 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  462. S. Vajda, Theory of Games and Linear Programming (Methuen, London, 1956)

    MATH  Google Scholar 

  463. Ch.-J. de la Vallée-Poussin, Sur l’approximation des fonctions d’une variable réelle et de leurs dérivées par des polynômes et des suites limitées de Fourier. Bull. Acad. R.. Cl. Sci. 3 (1908), 193–254

    Google Scholar 

  464. Ch.-J. de la Vallée-Poussin, Réduction des intégrales doubles de Lebesgue: application à la définition des fonctions analytiques. Bull. Acad. Sci. Brux, 768–798 (1910)

    Google Scholar 

  465. Ch.-J. de la Vallée-Poussin, Sur l’intégrale de Lebesgue. Trans. Am. Math. Soc. 16, 435–501 (1915)

    Google Scholar 

  466. G. Vitali, Sul problema della misura dei gruppi di punti di una retta (Gamberini e Parmeggiani, Bologna, 1905)

    MATH  Google Scholar 

  467. N.Ya. Vilenkin, Stories About Sets (Academic Press, New York, 1968)

    Google Scholar 

  468. N.Ya. Vilenkin, In Search of Infinity (Birkhäuser, Boston, 1995)

    Google Scholar 

  469. C. Visser, Note on linear operators. Proc. Acad. Amst. 40, 270–272 (1937)

    MATH  Google Scholar 

  470. G. Vitali, Sulle funzioni integrali. Atti Accad. Sci. Torino 40, 1021–1034 (1905)

    MATH  Google Scholar 

  471. G. Vitali, Sull’integrazione per serie. Rend. Circ. Mat. Palermo 23, 137–155 (1907)

    Article  MATH  Google Scholar 

  472. V. Volterra, Sulla inversione degli integrali definiti I-IV. Atti Accad. Torino 31, 311–323, 400–408, 557–567, 693–708 (1896); [476] II, 216–254

    Google Scholar 

  473. V. Volterra, Sulla inversione degli integrali definiti. Atti R. Accad. Rend. Lincei. Cl. Sci. Fis. Mat. Nat. (5) 5, 177–185 (1896); [476] II, 255–262

    Google Scholar 

  474. V. Volterra, Sulla inversione degli integrali multipli. Atti R. Accad. Rend. Lincei. Cl. Sci. Fis. Mat. Nat. (5) 5, 289–300 (1896); [476] II, 263–275

    Google Scholar 

  475. V. Volterra, Sopra alcuni questioni di inversione di integrali definiti. Annali di Mat. (2) 25, 139–178 (1897); [476] II, 279–313

    Google Scholar 

  476. V. Volterra, Opere matematiche. Memorie e Note I-V (Accademia Nazionale dei Lincei, Roma, 1954–1962)

    Google Scholar 

  477. B.L. van der Waerden, Ein einfaches Beispiel einer nichtdifferenzierbaren stetiges Funktion. Math. Z. 32, 474–475 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  478. S. Wagon, The Banach-Tarski Paradox (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  479. J.V. Wehausen, Transformations in linear topological spaces. Duke Math. J. 4, 157–169 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  480. K. Weierstrass, Differential Rechnung. Vorlesung an dem Königlichen Gewerbeinstitute, manuscript of 1861, Math. Bibl., Humboldt Universität, Berlin

    Google Scholar 

  481. K. Weierstrass, Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen. Gelesen in der Königlich. Akademie der Wissenschaften, 18. Juli 1872; [484] II, 71–74

    Google Scholar 

  482. K. Weierstrass, Theorie der analytischen Funktionen, Vorlesung an der Univ. Berlin, manuscript of 1874, Math. Bibl., Humboldt Universität, Berlin

    Google Scholar 

  483. K. Weierstrsass, Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente, Erste Mitteilung. Sitzungsberichte Akad. Berlin, 633–639 (1885); [484] III, 1–37. French translation: Sur la possibilité d’une représentation analytique des fonctions dites arbitraires d’une variable réelle, J. Math. Pures Appl. 2 (1886), 105–138

    Google Scholar 

  484. K. Weierstrsass, Mathematische Werke vol. I-VI, (Mayer & Müller, Berlin, 1894–1915), vol. VII, (Georg Olms Verlagsbuchhandlung, Hildesheim, 1927)

    Google Scholar 

  485. A. Weil, L’intégration dans les groupes topologiques et ses applications (Hermann, Paris, 1940)

    MATH  Google Scholar 

  486. R. Whitley, An Elementary Proof of the Eberlein–Šmulian Theorem. Math. Ann. 172, 116–118 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  487. N. Wiener, Limit in terms of continuous transformation. Bull. Soc. Math. France 50, 119–134 (1922)

    MathSciNet  MATH  Google Scholar 

  488. K. Yosida, Functional Analysis (Springer, Berlin, 1980)

    Book  MATH  Google Scholar 

  489. W.H. Young, On classes of summable functions and their Fourier series. Proc. R. Soc. (A) 87, 225–229 (1912)

    Article  MATH  Google Scholar 

  490. W.H. Young, The progress of mathematical analysis in the 20th century. Proc. Lond. Math. Soc. (2) 24 (1926), 421–434

    Google Scholar 

  491. L. Zajícek, An elementary proof of the one-dimensional density theorem. Am. Math. Mon. 86, 297–298 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  492. M. Zorn, A remark on a method in transfinite algebra. Bull. Am. Math. Soc. 41, 667–670 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  493. A. Zygmund, Trigonometric Series (Cambridge University Press, London, 1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Komornik, V. (2016). Integrals on Measure Spaces. In: Lectures on Functional Analysis and the Lebesgue Integral. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-6811-9_7

Download citation

Publish with us

Policies and ethics