Skip to main content

Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Mesenchymal stem cells (MSC) have been used for therapeutic purposes for many years. Multipotent cells in adipose tissue were postulated to exist by Kaplan and colleagues during their investigations into a disease called progressive osseous heteroplasia (POH). In this disease, bone forms in atypical locations, such as in subcutaneous fat or in muscle. Interest in multilineage cells from adipose tissue gained momentum after 2001, when Zuk and her colleagues published their sentinel paper showing differentiation of stromal-type cells from adipose tissue along adipogenic, chondrogenic and osteogenic lineages. Such has been the explosion of interest in the topic, a Medline search with “adipose” and “stem” and “cell” as the key words returns nearly 3,000 articles published since this time, compared with only 300 in the 30 years prior to this. The cells isolated from adipose tissue have been given various names, including adipose stem cells, adipose-derived stem cells, adipose-derived stromal cells, among others. A consensus statement was published following the International Fat Applied Technology Society (IFATS, now known as the International Federation for Adipose Therapeutics and Science) 2nd international meeting in 2004, concluding that they should be referred to as adipose-derived stem/stromal cells (ASC) to promote consistency across research group; hence, this is the terminology used in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag:

Antigen

AITP:

Autoimmune thrombocytopenic purpura

ASAPS:

American Society of Aesthetic Plastic Surgeons

ASC:

Adipose-derived stem cells

ASPS:

American Society of Plastic Surgeons

BCT:

Breast-conserving therapy

BMSC:

Bone marrow stem cells

CAL:

Cell-assisted lipotransfer

CHD:

Coronary heart disease

CT:

Computed tomography

ESC:

Embryonic stem cell

FI:

Fat injection

GVHD:

Graft-versus-host disease

HCN:

Hyperpolarization-activated cyclic nucleotide

HGF:

Hepatocyte growth factor

HLA:

Human leukocyte antigen

IFATS:

International Fat Applied Technology Society now known as the International Federation for Adipose Therapeutics and Science

ISCT:

International Society of Cellular Therapy

IV:

Intravenous

MS:

Multiple sclerosis

MSC:

Mesenchymal stromal/stem cell

NIH:

National Institutes of Health

OA:

Osteoarthritis

PLGA:

Poly(lactic-co-glycolic) acid

POH:

Progressive osseous heteroplasia

RA:

Rheumatoid arthritis

RBC:

Red blood cells

SC:

Schwann cell

SLE:

Systemic lupus erythematosus

SVF:

Stromal vascular fraction

TGFβ:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  1. Kaplan FS, Hahn GV, Zasloff MA. Heterotopic ossification: two rare forms and what they can teach us. J Am Acad Orthop Surg. 1994;2:288–96.

    PubMed  Google Scholar 

  2. Kaplan FS, Glaser DL, Hebela N, Shore EM. Heterotopic ossification. J Am Acad Orthop Surg. 2004;12(2):116–25.

    PubMed  Google Scholar 

  3. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    CAS  PubMed  Google Scholar 

  4. Zuk PA. Consensus statement. In: International fat applied technology society 2nd international meeting, Pittsburg, PA, USA, 2004.

    Google Scholar 

  5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  6. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54–63.

    CAS  PubMed  Google Scholar 

  8. Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol. 2003;58:137–60.

    PubMed  Google Scholar 

  9. Long JL, Zuk P, Berke GS, Chhetri DK. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope. 2010;120(1):125–31.

    CAS  PubMed  Google Scholar 

  10. Erba P, Terenghi G, Kingham PJ. Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Curr Stem Cell Res Ther. 2010;5(2):153–60.

    CAS  PubMed  Google Scholar 

  11. Ning H, Lin G, Lue TF, Lin C-S. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation. 2006;74(9–10):510–8.

    CAS  PubMed  Google Scholar 

  12. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6.

    CAS  PubMed  Google Scholar 

  13. Tholpady SS, Ogle RC, Katz AJ. Adipose stem cells and solid organ transplantation. Curr Opin Organ Transplant. 2009;14(1):51–5.

    PubMed  Google Scholar 

  14. Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, Kang B-C, Lee YS, Nakama K, Piao M, Sohl B, Kurtz A. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011;9:181.

    PubMed  PubMed Central  Google Scholar 

  15. Choi EW, Shin IS, Park SY, Park JH, Kim JS, Yoon EJ, Kang SK, Ra JC, Hong SH. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 2012;64(1):243–53.

    CAS  PubMed  Google Scholar 

  16. Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Buscher D, Delgado M. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):241–8.

    CAS  PubMed  Google Scholar 

  17. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P-N, Traas J, Schugar R, Deasy BM, Badylak S, Buhring H-J, Giacobino J-P, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    CAS  PubMed  Google Scholar 

  18. Kishi K, Imanishi N, Ohara H, Ninomiya R, Okabe K, Hattori N, Kubota Y, Nakajima H, Nakajima T. Distribution of adipose-derived stem cells in adipose tissues from human cadavers. J Plast Reconstr Aesthet Surg. 2010;63(10):1717–22.

    PubMed  Google Scholar 

  19. Surgery ASfAP. 15th Annual Cosmetic Surgery National Data Bank Statistics. 2011.http://www.surgery.org/sites/default/files/ASAPS-2011-Stats.pdf. Accessed 28 Apr 2012.

  20. Hanke CW, Coleman 3rd WP. Morbidity and mortality related to liposuction. Questions and answers. Dermatol Clin. 1999;17(4):899–902.

    CAS  PubMed  Google Scholar 

  21. Yoho RA, Romaine JJ, O’Neil D. Review of the liposuction, abdominoplasty, and face-lift mortality and morbidity risk literature. Dermatol Surg. 2005;31(7 Pt 1):733–43. [erratum appears in Dermatol Surg. 2005 Sep;31(9 Pt 1):1158], discussion 743.

    CAS  PubMed  Google Scholar 

  22. Housman TS, Lawrence N, Mellen BG, George MN, Filippo JS, Cerveny KA, DeMarco M, Feldman SR, Fleischer AB. The safety of liposuction: results of a national survey. Dermatol Surg. 2002;28(11):971–8.

    PubMed  Google Scholar 

  23. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235–44.

    PubMed  Google Scholar 

  24. Aust L, Devlin B, Foster SJ, Halvorsen YDC, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    CAS  PubMed  Google Scholar 

  25. Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol. 2006;325:35–46.

    PubMed  Google Scholar 

  26. Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ. Adipose tissue: stem cells and beyond. Clin Plast Surg. 2006;33(1):55–62.

    PubMed  Google Scholar 

  27. Billings EJMD, May JWJMD. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989;83(2):368–81.

    PubMed  Google Scholar 

  28. Delay E, Sinna R, Delaporte T, Flageul G, Tourasse C, Tousson G. Patient information before aesthetic lipomodeling (lipoaugmentation): a French plastic surgeon’s perspective. Aesthet Surg J. 2009;29(5):386–95.

    PubMed  Google Scholar 

  29. Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2007;119(3):775–85.

    CAS  PubMed  Google Scholar 

  30. Petit JY, Lohsiriwat V, Clough KB, Sarfati I, Ihrai T, Rietjens M, Veronesi P, Rossetto F, Scevola A, Delay E. The oncologic outcome and immediate surgical complications of lipofilling in breast cancer patients: a multicenter study – Milan-Paris-Lyon experience of 646 lipofilling procedures. Plast Reconstr Surg. 2011;128(2):341–6.

    CAS  PubMed  Google Scholar 

  31. Rietjens M, De Lorenzi F, Rossetto F, Brenelli F, Manconi A, Martella S, Intra M, Venturino M, Lohsiriwat V, Ahmed Y, Petit JY. Safety of fat grafting in secondary breast reconstruction after cancer. J Plast Reconstr Aesthet Surg. 2011;64(4):477–83.

    CAS  PubMed  Google Scholar 

  32. Delay E, Garson S, Tousson G, Sinna R. Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J. 2009;29(5):360–76.

    PubMed  Google Scholar 

  33. Ersek RAMDAT. Transplantation of purified autologous Fat: a 3-year follow-Up is disappointing. Plast Reconstr Surg. 1991;87(2):219–27.

    CAS  PubMed  Google Scholar 

  34. Locke MB, de Chalain TMB. Current practice in autologous fat transplantation: suggested clinical guidelines based on a review of recent literature. Ann Plast Surg. 2008;60(1):98–102.

    CAS  PubMed  Google Scholar 

  35. Nguyen A, Pasyk KA, Bouvier TN, Hassett CA, Argenta LC. Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg. 1990;85(3):378–86; discussion 387–379.

    CAS  PubMed  Google Scholar 

  36. Coleman SR. Structural fat grafts: the ideal filler? Clin Plast Surg. 2001;28(1):111–9.

    CAS  PubMed  Google Scholar 

  37. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12(12):3375–82.

    CAS  PubMed  Google Scholar 

  38. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32(1):48–55; discussion 56–47.

    PubMed  PubMed Central  Google Scholar 

  39. Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med. 2009;4(2):265–73.

    PubMed  Google Scholar 

  40. Coleman SR. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg. 2006;118(3 Suppl):108S–20.

    CAS  PubMed  Google Scholar 

  41. Murillo WLMD. Buttock augmentation: case studies of fat injection monitored by magnetic resonance imaging. Plast Reconstr Surg. 2004;114(6):1606–14.

    PubMed  Google Scholar 

  42. Niechajev IMDDS, Sevcuk OMD. Long-term results of fat transplantation: clinical and histologic studies. Plast Reconstr Surg. 1994;94(3):496–506.

    CAS  PubMed  Google Scholar 

  43. Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg. 2001;27(9):819–26.

    CAS  PubMed  Google Scholar 

  44. Sterodimas A, de Faria J, Nicaretta B, Boriani F. Autologous fat transplantation versus adipose-derived stem cell-enriched lipografts: a study. Aesthet Surg J. 2011;31(6):682–93.

    PubMed  Google Scholar 

  45. Perez-Cano R, Vranckx JJ, Lasso JM, Calabrese C, Merck B, Milstein AM, Sassoon E, Delay E, Weiler-Mithoff EM. Prospective trial of Adipose-Derived Regenerative Cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial. Eur J Surg Oncol. 2012;38(5):382–9.

    CAS  PubMed  Google Scholar 

  46. Procedures AA-HCoN. Report on autologous fat transplantation. American Society of Plastic Surgeons. 1987.

    Google Scholar 

  47. Khouri R, Del Vecchio D. Breast reconstruction and augmentation using pre-expansion and autologous fat transplantation. Clin Plast Surg. 2009;36(2):269–80.

    PubMed  Google Scholar 

  48. Eaves 3rd FF, Haeck PC, Rohrich RJ. ASAPS/ASPS Position statement on stem cells and fat grafting. Plast Reconstr Surg. 2012;129(1):285–7.

    CAS  PubMed  Google Scholar 

  49. Garcia-Olmo D, Garcia-Arranz M, Garcia LG, Cuellar ES, Blanco IF, Prianes LA, Montes JAR, Pinto FL, Marcos DH, Garcia-Sancho L. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis. 2003;18(5):451–4.

    PubMed  Google Scholar 

  50. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.

    PubMed  Google Scholar 

  51. Garcia-Olmo DMD, Herreros DMD, Pascual IMD, Pascual JAMD, Del-Valle EMD, Zorrilla JMD, De-La-Quintana PPD, Garcia-Arranz MPD, Pascual MPD. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52(1):79–86.

    PubMed  Google Scholar 

  52. Rigotti GMD, Marchi AMD, Galie MPD, Baroni GPD, Benati DPD, Krampera MMD, Pasini APD, Sbarbati AMD. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.

    CAS  PubMed  Google Scholar 

  53. Jeong JH. Adipose stem cells and skin repair. Curr Stem Cell Res Ther. 2010;5(2):137–40.

    CAS  PubMed  Google Scholar 

  54. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80. doi:10.1038/nature05664. nature05664 [pii].

    CAS  PubMed  Google Scholar 

  55. Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE, Canzi L, Cristini S, Invernici G, Parati EA, Alessandri G. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc Cell. 2011;3(1):5. doi:10.1186/2045-824X-3-5. 2045-824X-3-5 [pii].

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang P, Moudgill N, Hager E, Tarola N, Dimatteo C, McIlhenny S, Tulenko T, DiMuzio PJ. Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells Dev. 2011;20(6):977–88. doi:10.1089/scd.2010.0152.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    CAS  PubMed  Google Scholar 

  58. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26(10):2713–23. doi:10.1634/stemcells.2008-0031. 2008-0031 [pii].

    PubMed  Google Scholar 

  59. Keck M, Haluza D, Lumenta DB, Burjak S, Eisenbock B, Kamolz LP, Frey M. Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns. 2011;37(4):626–30. doi:10.1016/j.burns.2010.07.016.

    PubMed  Google Scholar 

  60. Lu W, Yu J, Zhang Y, Ji K, Zhou Y, Li Y, Deng Z, Jin Y. Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Cells Tissues Organs. 2012;195(3):197–206. doi:10.1159/000324921.

    CAS  PubMed  Google Scholar 

  61. Auxenfans C, Lequeux C, Perrusel E, Mojallal A, Kinikoglu B, Damour O. Adipose-derived stem cells (ASCs) as a source of endothelial cells in the reconstruction of endothelialized skin equivalents. J Tissue Eng Regen Med. 2011. doi:10.1002/term.454.

    PubMed  Google Scholar 

  62. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F, National Arthritis Data W. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.

    PubMed  PubMed Central  Google Scholar 

  63. Locke M, Feisst V, Dunbar PR. Concise review: human Adipose-derived Stem Cells (ASC): separating promise from clinical need. Stem Cells. 2011; On line.

    Google Scholar 

  64. Cowan CM, Shi Y-Y, Aalami OO, Chou Y-F, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22(5):560–7.

    CAS  PubMed  Google Scholar 

  65. Lee K, Kim H, Kim J-M, Kim J-R, Kim K-J, Kim Y-J, Park S-I, Jeong J-H, Moon Y-M, Lim H-S, Bae D-W, Kwon J, Ko C-Y, Kim H-S, Shin H-I, Jeong D. Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med. 2011;15(10):2082–94.

    CAS  PubMed  Google Scholar 

  66. Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt H-P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.

    PubMed  Google Scholar 

  67. Thesleff T, Lehtimaki K, Niskakangas T, Mannerstrom B, Miettinen S, Suuronen R, Ohman J. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery. 2011;68(6):1535–40.

    PubMed  Google Scholar 

  68. Ahn HH, Kim KS, Lee JH, Lee JY, Kim BS, Lee IW, Chun HJ, Kim JH, Lee HB, Kim MS. In vivo osteogenic differentiation of human adipose-derived stem cells in an injectable in situ-forming gel scaffold. Tissue Eng Part A. 2009;15(7):1821–32.

    CAS  PubMed  Google Scholar 

  69. Jung S-N, Rhie JW, Kwon H, Jun YJ, Seo J-W, Yoo G, Oh DY, Ahn ST, Woo J, Oh J. In vivo cartilage formation using chondrogenic-differentiated human adipose-derived mesenchymal stem cells mixed with fibrin glue. J Craniofac Surg. 2010;21(2):468–72.

    PubMed  Google Scholar 

  70. Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201–9.

    CAS  PubMed  Google Scholar 

  71. Ogawa R, Mizuno S. Cartilage regeneration using adipose-derived stem cells. Curr Stem Cell Res Ther. 2010;5(2):129–32.

    CAS  PubMed  Google Scholar 

  72. Kim H-J, Im G-I. Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res. 2009;27(5):612–9.

    PubMed  Google Scholar 

  73. Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PIJM, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. 2005;11(11–12):1780–8.

    CAS  PubMed  Google Scholar 

  74. Al Battah F, De Kock J, Vanhaecke T, Rogiers V. Current status of human adipose-derived stem cells: differentiation into hepatocyte-like cells. Sci World J. 2011;11:1568–81.

    CAS  Google Scholar 

  75. Fang B, Li Y, Song Y, Li N, Cao Y, Wei X, Lin Q, Zhao RC. Human adipose tissue-derived adult stem cells can lead to multiorgan engraftment. Transplant Proc. 2010;42(5):1849–56.

    CAS  PubMed  Google Scholar 

  76. Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodriguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009;30(19):3259–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, Iwaguro H, Matsukawa Y, Funahashi Y. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int J Urol. 2010;17(1):75–82. Retraction in Int J Urol. 2010 Oct;17(10):896; PMID: 20936755.

    PubMed  Google Scholar 

  78. Lee PE, Kung RC, Drutz HP. Periurethral autologous fat injection as treatment for female stress urinary incontinence: a randomized double-blind controlled trial. J Urol. 2001;165(1):153–8.

    CAS  PubMed  Google Scholar 

  79. Association AH. Heart disease and stroke statistics – 2010 update at-a-glance. 2010. http://www.americanheart.org/downloadable/heart/1265665152970DS-3241%20HeartStrokeUpdate_2010.pdf. Accessed 27 Sept 2010.

  80. Writing Group M, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215. Erratum appears in Circulation. 2011 Oct 18;124(16):e425], [Erratum appears in Circulation. 2010 Mar 30;121(12):e260 Note: Stafford, Randall [corrected to Roger, Veronique L].

    Google Scholar 

  81. Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. Wiley Interdiscip Rev Syst Biol Med. 2011;3(6):666–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mazo M, Gavira JJ, Pelacho B, Prosper F. Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res. 2011;4(2):145–53.

    PubMed  Google Scholar 

  83. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004;94(2):223–9.

    CAS  PubMed  Google Scholar 

  84. Song Y-H, Gehmert S, Sadat S, Pinkernell K, Bai X, Matthias N, Alt E. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun. 2007;354(4):999–1003.

    CAS  PubMed  Google Scholar 

  85. Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med. 2010. doi:10.1111/j.1582-4934.2010.01009.x. JCMM1009 [pii].

    PubMed Central  Google Scholar 

  86. Yang J, Song T, Wu P, Chen Y, Fan X, Chen H, Zhang J, Huang C. Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol Med Rep. 2012;5(1):108–13.

    CAS  PubMed  Google Scholar 

  87. Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31(4):489–501.

    CAS  PubMed  Google Scholar 

  88. van der Bogt KEA, Schrepfer S, Yu J, Sheikh AY, Hoyt G, Govaert JA, Velotta JB, Contag CH, Robbins RC, Wu JC. Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation. 2009;87(5):642–52.

    PubMed  PubMed Central  Google Scholar 

  89. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen P-S, March KL. IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells. 2009;27(1):230–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol. 2009;297(3):H1020–31.

    CAS  PubMed  Google Scholar 

  91. Valina C, Pinkernell K, Song Y-H, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007;28(21):2667–77.

    PubMed  Google Scholar 

  92. Friis T, Haack-Sorensen M, Mathiasen AB, Ripa RS, Kristoffersen US, Jorgensen E, Hansen L, Bindslev L, Kjaer A, Hesse B, Dickmeiss E, Kastrup J. Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scand Cardiovasc J. 2011;45(3):161–8.

    PubMed  Google Scholar 

  93. Kastrup J. MesenchYmal STROMAL CELL therapy in patients with chronic myocardial ischemia (MyStromalCell Trial). 2012. Available via NIH. http://www.clinicaltrials.gov/ct2/show/NCT01449032?term=cardiac+disease+and+adipose+stem+cells&rank=4. Accessed 22 May 2012.

  94. Health USNIo. Search for trials “cardiac+disease+and+adipose+stem+cells”. 2012. Available via NIH. http://www.clinicaltrials.gov/ct2/results?term=cardiac+disease+and+adipose+stem+cells. Accessed 22 May 2012.

  95. Cytori Therapeutics I. Cytori-sponsored clinical trials. 2010. http://www.cytori.com/Innovations/ClinicalTrials.aspx. Accessed 9 Oct 2010 2010.

  96. Bai X, Alt E. Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem Biophys Res Commun. 2010;401(3):321–6.

    CAS  PubMed  Google Scholar 

  97. Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pegas Henriques JA. Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation. 2009;77(3):221–8.

    PubMed  Google Scholar 

  98. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183(2):355–66 [see comment].

    CAS  PubMed  Google Scholar 

  99. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2009. doi:10.1016/j.bjps.2009.09.012. S1748-6815(09)00633-0 [pii].

    PubMed  Google Scholar 

  100. Erba P, Mantovani C, Kalbermatten DF, Pierer G, Terenghi G, Kingham PJ. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–7.

    CAS  PubMed  Google Scholar 

  101. Dadon-Nachum M, Melamed E, Offen D. Stem cells treatment for sciatic nerve injury. Expert Opin Biol Ther. 2011;11(12):1591–7.

    PubMed  Google Scholar 

  102. Momin EN, Mohyeldin A, Zaidi HA, Vela G, Quinones-Hinojosa A. Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr Stem Cell Res Ther. 2010;5(4):326–44.

    CAS  PubMed  Google Scholar 

  103. Lu P, Tuszynski MH. Can bone marrow-derived stem cells differentiate into functional neurons? Exp Neurol. 2005;193(2):273–8.

    CAS  PubMed  Google Scholar 

  104. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506. doi:10.1182/blood-2007-02-069716.

    CAS  PubMed  Google Scholar 

  105. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246–53.

    CAS  PubMed  Google Scholar 

  106. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    PubMed  Google Scholar 

  107. Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582–91. doi:10.1634/stemcells.2006-0228.

    CAS  PubMed  Google Scholar 

  108. Lee S-T, Chu K, Jung K-H, Im W-S, Park J-E, Lim H-C, Won C-H, Shin S-H, Lee SK, Kim M, Roh J-K. Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol. 2009;66(5):671–81.

    CAS  PubMed  Google Scholar 

  109. Darlington PJ, Boivin M-N, Bar-Or A. Harnessing the therapeutic potential of mesenchymal stem cells in multiple sclerosis. Expert Rev Neurother. 2011;11(9):1295–303.

    PubMed  PubMed Central  Google Scholar 

  110. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39.

    CAS  PubMed  Google Scholar 

  111. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89.

    PubMed  Google Scholar 

  112. Fang B, Song Y, Liao L, Zhang Y, Zhao RC. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007;39(10):3358–62.

    CAS  PubMed  Google Scholar 

  113. Fang B, Song YP, Li N, Li J, Han Q, Zhao RC. Resolution of refractory chronic autoimmune thrombocytopenic purpura following mesenchymal stem cell transplantation: a case report. Transplant Proc. 2009;41(5):1827–30.

    CAS  PubMed  Google Scholar 

  114. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, Kwon E. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308.

    CAS  PubMed  Google Scholar 

  115. Riordan NH, Ichim TE, Min W-P, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:29.

    PubMed  PubMed Central  Google Scholar 

  116. Martin PJ, Schoch G, Fisher L, Byers V, Appelbaum FR, McDonald GB, Storb R, Hansen JA. A retrospective analysis of therapy for acute graft-versus-host disease: secondary treatment. Blood. 1991;77(8):1821–8.

    CAS  PubMed  Google Scholar 

  117. Pearl RA, Leedham SJ, Pacifico MD. The safety of autologous fat transfer in breast cancer: lessons from stem cell biology. J Plast Reconstr Aesthet Surg. 2012;65(3):283–8.

    PubMed  Google Scholar 

  118. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol. 2007;180:263–83.

    CAS  PubMed  Google Scholar 

  119. Ramasamy R, Lam EWF, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304–10 (08876924).

    CAS  PubMed  Google Scholar 

  120. Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E, Ferrone S, Barnaba V, Pistoia V. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells. 2008;26(5):1275–87. doi:10.1634/stemcells.2007-0878.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.

    CAS  PubMed  Google Scholar 

  122. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    CAS  PubMed  Google Scholar 

  123. MacIsaac ZM, Shang H, Agrawal H, Yang N, Parker A, Katz AJ. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells. Exp Cell Res. 2012;318(4):416–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Perrot P, Rousseau J, Bouffaut A-L, Redini F, Cassagnau E, Deschaseaux F, Heymann M-F, Heymann D, Duteille F, Trichet V, Gouin F. Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One. 2010;5(6):e10999.

    PubMed  PubMed Central  Google Scholar 

  125. Rigotti G, Marchi A, Stringhini P, Baroni G, Galie M, Molino AM, Mercanti A, Micciolo R, Sbarbati A. Determining the oncological risk of autologous lipoaspirate grafting for post-mastectomy breast reconstruction. Aesthetic Plast Surg. 2010;34(4):475–80.

    PubMed  Google Scholar 

  126. De Lorenzi F, Lohsiriwat V, Petit J In Response To: Rigotti G, Marchi A, Stringhini P et al. Determining the oncological risk of autologous lipoaspirate grafting for post-mastectomy breast reconstruction. Aesthet Plast Surg. 2010;34:475. Aesthet Plast Surg 35(1):132–33.

    Google Scholar 

  127. Veronesi U, Marubini E, Mariani L, Galimberti V, Luini A, Veronesi P, Salvadori B, Zucali R. Radiotherapy after breast-conserving surgery in small breast carcinoma: long-term results of a randomized trial. Ann Oncol. 2001;12(7):997–1003.

    CAS  PubMed  Google Scholar 

  128. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 2000;60(9):2562–6.

    CAS  PubMed  Google Scholar 

  129. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.

    CAS  PubMed  Google Scholar 

  130. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–5.

    CAS  PubMed  Google Scholar 

  131. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41. doi:10.1038/nature08797. nature08797 [pii].

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM, Robbins RC, Longaker MT, Wu JC. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A. 2009;106(37):15720–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.

    CAS  PubMed  Google Scholar 

  135. Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns. In press, Corrected proof.

    Google Scholar 

  136. Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol Pharm. 2011;8(5):1480–7.

    CAS  PubMed  Google Scholar 

  137. Lin G, Wang G, Liu G, Yang L-J, Chang L-J, Lue TF, Lin C-S. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev. 2009;18(10):1399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle B. Locke MBChB, MD, FRACS (Plastics) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Locke, M.B., Feisst, V.J. (2015). Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics