Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 361 Accesses

Abstract

In this chapter, first a brief introduction to kinetic theory is provided to demonstrate the terminology which the authors believe helps in grasping the ideas and then, the basic definitions for the fluid–particle system are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minier JP, Peirano E (2001) The pdf approach to turbulent polydispersed two-phase ows. Phys Rep 352:1–214

    Article  MATH  MathSciNet  Google Scholar 

  2. Pope SB (1994) On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys Fluids 6:973–985

    Article  MATH  Google Scholar 

  3. Wells MR, Stock DE (1983) The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J Fluid Mech 136:31–62

    Article  Google Scholar 

  4. Csanady GT (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atmos Sci 20:201–208

    Article  Google Scholar 

  5. Boivin M, Simonin O, Squires KD (1998) Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J Fluid Mech 375:235–263

    Article  MATH  Google Scholar 

  6. Stokes GG (1851) On the effect of the inertial friction of fluids on the motion of pendulums. Trans Camb Phil Soc 1

    Google Scholar 

  7. Gouesbet G, Berlemont A, Picart A (1984) Dispersion of discrete particles by continuous turbulent motion. extensive discussion of tchen’s theory, using a two - parameter family of lagrangian correlation functions. Phys Fluids 27:827–837

    Article  MATH  Google Scholar 

  8. Ranade VV (2002) Computational flow modeling for chemical reactor engineering. Academic Press, San Diego

    Google Scholar 

  9. Crowe C, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, Boca Raton

    Google Scholar 

  10. Maxey MR, Riley JJ (1983) Equation of motion for small rigid sphere in non—uniform flow. Phys Fluids 4:883–889

    Article  Google Scholar 

  11. Picart A, Berlemont A, Gouesbet G (1982) De linfulence du terme de basset sur la diepersion de particules discretes dans le cadre de la theorie de tchen. CR Acad Sci Paris Ser II:295–305

    Google Scholar 

  12. Rudinger G (1980) Handbook of powder technology. Elsevier Scientific Publishing Co, Amesterdam

    Google Scholar 

  13. Voir D, Michaelides E (1994) The effect of history term on on the motion of rigid sphere in a viscous flow. Int J Multiph Flow 20:547

    Article  Google Scholar 

  14. Auton TR (1983) The dynamics of bubbles, drops and particles in motion in liquids. Ph.D. thesis, University of Cambridge, Cambridge

    Google Scholar 

  15. Auton TR, Hunts JCR, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241–257

    Article  MATH  MathSciNet  Google Scholar 

  16. Shrimpton JS, Yule AJ (1999) Characterisation of charged hydrocarbon sprays for application in combustion systems. Exp Fluids 26:460–469

    Article  Google Scholar 

  17. Watts RG, Ferrer R (1987) The lateral force on a spinning sphere: aerodynamics of a curveball. Am J Phys 55:1–40

    Article  Google Scholar 

  18. Scott SJ (2006) A pdf based method formodelling polysized particle laden turbulent flows without size class discretisation. PhD thesis, Imperial College London

    Google Scholar 

  19. Balachandar S (2009) A scaling analysis for pointparticle approaches to turbulent multiphase flows. Int J Multiph Flow 35:801–810

    Article  Google Scholar 

  20. Ferrante A, Elghobashi S (2004) On the physical mechanism of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech 503:345–355

    Article  MATH  Google Scholar 

  21. Wang L, Maxey M (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68

    Article  Google Scholar 

  22. Berrouk A, Laurence D, Riley J, Stock D (2007) Stochastic modeling of inertial particle dispersion by subgrid motion for les of high reynolds number pipe flow. J Turbul 8

    Google Scholar 

  23. Shotorban B, Balachandar S (2006) Particle concentration in homogeneous shear turbulence simulated via lagrangian and equilibrium eulerian approaches. Phys Fluids 18

    Google Scholar 

  24. Minier JP, Peirano E, Chibbaro S (2004) Pdf model based on langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow. Phys Fluids A 16:2419–2431

    Article  Google Scholar 

  25. Chapman S, Cowling TG (1990) The mathematical theory Of non-uniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  26. Gambosi TI (1994) Gaskinetic theory. Cambridge University Press, Cambridge

    Google Scholar 

  27. Bellomo N, Lo Schiavo M (1997) From the boltzmann equation to generalized kinetic models in applied sciences. Mathl Comput Model 26:43–76

    Article  MATH  MathSciNet  Google Scholar 

  28. Cercignani C (1975) Theory and application Of the boltzmann equation. Scottish Academic Press Ltd, New York

    Google Scholar 

  29. Cercignani C (1972) On the boltzmann equation for rigid spheres. Transp Theory Stat Phys 2:211–225

    Article  MATH  MathSciNet  Google Scholar 

  30. Gidaspow (1994) Multiphase flow and fluidization. Academic Press, San Diego

    Google Scholar 

  31. Frisch U (1991) Relation between the lattice boltzmann equation and the navier-stokes equations. Phys D 47:231–232

    Article  MathSciNet  Google Scholar 

  32. McKean HP (1969) A simple model of the derivation of fluid mechanics from the boltzmann equation. Bull Am Math Soc 75:1–10

    Article  MATH  MathSciNet  Google Scholar 

  33. Grad H (1964) Asymptotic theory of the boltzmann equation. Phys Fluids 6:147–181

    Article  MathSciNet  Google Scholar 

  34. Campbell CS (1990) Rapid granular flows. Ann Rev Fluid Meeh 22:57–92

    Article  Google Scholar 

  35. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Ann Rev Fluid Mech 40:1–24

    Article  MathSciNet  Google Scholar 

  36. Goldhirsch I (2003) Rapid granular flows. Ann Rev Fluid Mech 35:267–293

    Article  MathSciNet  Google Scholar 

  37. Neri A, Gidaspow D (2000) Riser hydrodynamics: simulation using kinetic theory. AIChE J 46:52–67

    Article  Google Scholar 

  38. Subramaniam S (2000) Statistical representation of a spray as a point process. Phys Fluids 12:2413–2431

    Article  Google Scholar 

  39. Peirano E, Chibbaro S, Pozorski J, Minier JP (2006) Mean-field/pdf numerical approach for polydispersed turbulent two-phase flows. Prog EnergyCombust Sci 32:315–371

    Article  Google Scholar 

  40. Pope S (1994) On the relationship between stochastic lagrangian models of turbulence and second-moment closures. Phys Fluids 6:973–985

    Article  MATH  Google Scholar 

  41. Csanady G (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atmos Sci 20:201–208

    Article  Google Scholar 

  42. Williams FA (1958) Spray combustion and atomization. Phys Fluids 1:541–545

    Article  MATH  Google Scholar 

  43. Archambault MR, Edwards CF (2000) Computation of spray dynamics by direct solution of moment transport equations-inclusion of nonlinear momentum exchange. In: Eighth international conference on liquid atomization and spray systems

    Google Scholar 

  44. Archambault MR, Edwards CF, McCormack RW (2003) Computation of spray dynamics bymoment transport equations i: theory and development. Atomization Sprays 13:63–87

    Article  Google Scholar 

  45. Archambault MR, Edwards CF, McCormack RW (2003) Computation of spray dynamics by moment transport equations ii: application to quasi-one dimensional spray. Atomization Sprays 13:89–115

    Article  Google Scholar 

  46. Domelevo K (2001) The kinetic sectional approach for noncolliding evaporating sprays. Atomization Sprays 11:291–303

    Google Scholar 

  47. Tambour Y (1980) A sectional model for evaporation and combustion of sprays of liquid fuels. Israel J Tech 18:47–56

    MATH  Google Scholar 

  48. Haken H (1989) Synergetics: an overview. Rep Prog Phys 52:515–533

    Article  MathSciNet  Google Scholar 

  49. Pope SB (1994) Lagrangian pdf methods for turbulent flows. Ann Rev Fluid Mech 26:23–63

    Article  MathSciNet  Google Scholar 

  50. Simonin O (2000) Statistical and continuum modelling of turbulent reactive particulate flows. part 1: theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation. In: Lecure series, Von-Karman Institute for Fluid Dynamics

    Google Scholar 

  51. Gosman AD, Ioannides E (1983) Aspects of computer simulation of liquid-fueled combustors. J Energy 7:482–490

    Article  Google Scholar 

  52. Berlemont A, Desjonqueres P, Guesbet G (1990) Particle lagrangian simulation in turbulent flows. Int J Multiph Flow 16:19–34

    Article  MATH  Google Scholar 

  53. Ormancey A, Martinon A (1984) Prediction of particle dispersion in turbulent flows. Phys-Chem Hydrodyn 5:229–244

    Google Scholar 

  54. Simonin O (2000) Statistical and continuum modelling of turbulent reactive particulate flows. part 2: application of a two-phase second-moment transport model for prediction of turbulent gas-particle flows. In: Lecure series, Von-Karman Institute for Fluid Dynamics

    Google Scholar 

  55. Perkins R, Ghosh S, Phillips J (1991) Interaction of particles and coherent structures in a plane turbulent air jet. Adv Turbul 3:93–100

    Google Scholar 

  56. Simonin O, Deutsch E, Minier JP (1993) Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. App Sci Res 51:275–283

    Article  MATH  Google Scholar 

  57. Simonin O, Deutsch E, Bovin M (1993) Large eddy simulation and second-moment closure model of particle fluctuatingmotion in two-phase turbulent shear flows. Turbulent Shear Flows 9

    Google Scholar 

  58. Pope SB (1985) Pdf methods for turbulent reactive flows. Prog EnergyCombust Sci 11:119–192

    Article  MathSciNet  Google Scholar 

  59. Pope S (1991) Application of the velocity-dissipation probability density function model in inhomogeneous turbulent flows. Phys Fluids A 3(8):1947–1957

    Article  MATH  Google Scholar 

  60. Pope SB, Chen YL (1990) The velocity-dissipation probability density function model for turbulent flows. Phys Fluids A 2(8):1437–1449

    Google Scholar 

  61. Pope S (2001) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  62. Minier JP, Pozorski J (1997) Derivation of a pdf model for turbulent flows based on principles from statistical physics. Phys Fluids 9(6):1748–1753

    Article  MATH  MathSciNet  Google Scholar 

  63. Peirano E, Leckner B (1998) Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Prog Energy Combust Sci 24:259–296

    Article  Google Scholar 

  64. Hanjalic K, Launder BE (1972) A reynolds stress model of turbulence and its application to thin shear flows. J Fluid Mech 52:609–638

    Article  MATH  Google Scholar 

  65. Wouters HA, Peeters TWJ, Roekaerts D (1996) On the existence of a generalized langevin model representation for second-moment closures. Phys Fluids 8:1702–1704

    Article  MATH  Google Scholar 

  66. Beck JC, Watkins AP (1999) Spray modelling using the moments of the droplet size distribution. In: ILASS-Europe

    Google Scholar 

  67. Beck JC, Watkins AP (2000) Modelling polydispersed sprays without discretisation into droplet size classes. In: ILASS Pasadena

    Google Scholar 

  68. Beck JC, Watkins AP (2003) The droplet number moments approach to spray modelling: the development of heat and mass transfer sub-models. Int J Heat Fluid Flow 24:242–259

    Article  Google Scholar 

  69. Wang Q, Squires KD, Simonin O (1998) Large eddy simulation of turbulent gas-solid flows in a vertical channel and evaluation of second-order models. Int J Heat Fluid Flow 19:505–511

    Article  Google Scholar 

  70. Simonin O, Deutsch E, Boivin M (1995) Comparison of large-eddy simulation and second-moment closure of particle fluctuating motion in two-phase turbulent shear flows. In: Turbulence and shear flows, vol 9. Springer, Berlin, pp 85–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Shrimpton .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Shrimpton, J.S., Haeri, S., Scott, S.J. (2014). A Poly-dispersed EE Model. In: Statistical Treatment of Turbulent Polydisperse Particle Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6344-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6344-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6343-5

  • Online ISBN: 978-1-4471-6344-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics