Skip to main content

Well-Quasi-Orderings and the Robertson–Seymour Theorems

  • Chapter
Fundamentals of Parameterized Complexity

Part of the book series: Texts in Computer Science ((TCS))

  • 3361 Accesses

Abstract

As we will see, well-quasi-orderings (WQOs) provide a powerful engine for demonstrating that classes of problems are FPT. In the next section, we will look at the rudiments of the theory of WQOs, and in subsequent sections, we will examine applications to combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that a partial ordering is a quasi-ordering that is also antisymmetric.

  2. 2.

    Sometimes, filters are called upper ideals.

  3. 3.

    Ramsey’s Theorem (Ramsey [572]) states that if B is an infinite set and k is a positive integer, then if we color the subsets of B of size k with colors chosen from {1,…,m}, then there is an infinite subset B′⊆B such that all the size k subsets of Bhave the same color. B′ is referred to a homogeneous subset.

  4. 4.

    Apparently, this result was independently discovered by Pontryagin. We refer the reader to Kennedy, Quintas, and Syslo [437].

  5. 5.

    Chain Minor Ordering was recently shown to be FPT by Blasiok and Kaminski [68].

  6. 6.

    Rado actually proved that this example is canonical in the sense that if Q is a WQO such that Q ω is not a WQO, then the quasi-ordering 〈S,≤〉 of this hint will embed into Q.

References

  1. K. Abrahamson, M. Fellows, Cutset regularity beats well-quasi-ordering for bounded treewidth, Preprint (1989)

    Google Scholar 

  2. K. Abrahamson, M. Fellows, Finite automata, bounded treewidth, and well-quasiordering, in Proceedings of the AMS Summer Workshop on Graph Minors, Graph Structure Theory, ed. by N. Robertson, P. Seymour. Contemporary Mathematics, vol. 147 (Am. Math. Soc., Providence, 1993), pp. 539–564

    Google Scholar 

  3. J. Blasiok, M. Kaminski, Chain minors are FPT, in Proceedings of IPEC 2013 (2013)

    Google Scholar 

  4. K. Cattell, M. Dinneen, A characterization of graphs with vertex cover up to five, in Proceedings of the International Workshop on Orders, Algorithms, and Applications (ORDAL ’94). LNCS, vol. 831 (Springer, London, 1994), pp. 86–99

    Chapter  Google Scholar 

  5. K. Cattell, M. Dinneen, R. Downey, M. Fellows, M. Langston, On computing graph minor obstruction sets. Theor. Comput. Sci. 233, 107–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Cattell, M. Dinneen, M. Fellows, Obstructions to within a few vertices or edges of acyclic, in Algorithms and Data Structures, Proceedings of 4th International Workshop, WADS 1995, Kingston, Ontario, Canada, August 16–18, 1995, ed. by S. Akl, F. Dehne, J.-R. Sack, N. Santoro. LNCS, vol. 955 (Springer, Berlin, 1995), pp. 415–427

    Google Scholar 

  7. B. Courcelle, R. Downey, M. Fellows, A note on the computability of graph minor obstruction sets for monadic second-order ideals. J. Univers. Comput. Sci. 3, 1194–1198 (1997)

    MathSciNet  MATH  Google Scholar 

  8. G. Dirac, S. Schuster, A theorem of Kuratowski. Indag. Math. 16(3), 343–348 (1954)

    MathSciNet  Google Scholar 

  9. R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999)

    Book  Google Scholar 

  10. L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Petropolitanae 8, 128–140 (1741)

    Google Scholar 

  11. M. Fellows, M. Langston, Nonconstructive proofs of polynomial-time complexity. Inf. Process. Lett. 26, 157–162 (1987/88)

    Article  MathSciNet  Google Scholar 

  12. M. Fellows, M. Langston, Nonconstructive tools for proving polynomial-time complexity. J. ACM 35, 727–739 (1988)

    MathSciNet  MATH  Google Scholar 

  13. M. Fellows, M. Langston, On search, decision and the efficiency of polynomial time algorithms, in Proceedings of 21st ACM Symposium on Theory of Computing (STOC ’89), Seattle, Washington, USA, May 15–May 17, 1989, ed. by D. Johnson (ACM, New York, 1989), pp. 501–512. http://dl.acm.org/citation.cfm?id=73055

    Google Scholar 

  14. M. Grohe, K. Kawarabayashi, D. Marx, P. Wollan, Finding topological subgraphs is fixed-parameter tractable, in Proceedings of 43rd ACM Symposium on Theory of Computing (STOC ’11), San Jose, California, USA, June 6–June 8, 2011, ed. by L. Fortnow, S. Vadhan (ACM, New York, 2011), pp. 479–488

    Google Scholar 

  15. J. Gustedt, Well quasi ordering finite posets and formal languages. J. Comb. Theory, Ser. B 65(1), 111–124 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Harary, Graph Theory (Addison-Wesley, Reading, 1969)

    Google Scholar 

  17. G. Higman, Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2, 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Kennedy, L. Quintas, M. Sysło, The theorem on planar graphs. Hist. Math. 12(4), 356–368 (1985)

    Article  MATH  Google Scholar 

  19. J. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95(2), 210–225 (1960)

    MathSciNet  MATH  Google Scholar 

  20. J. Kruskal, The theory of well-quasi-ordering: a frequently rediscovered concept. J. Comb. Theory, Ser. A 13, 297–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Kuratowski, Sur le probleme des courbes gauches en topologie. Fundam. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  22. B. Mohar, Embedding graphs in an arbitrary surface in linear time, in Proceedings of 28th ACM Symposium on Theory of Computing (STOC ’96), Philadelphia, Pennsylvania, USA, May 22–May 24, 1996, ed. by G. Miller (ACM, New York, 1996), pp. 392–397

    Google Scholar 

  23. C. Nash-Williams, On well-quasi-ordering finite trees. Math. Proc. Camb. Philos. Soc. 59(4), 833–835 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Nash-Williams, On well-quasi-ordering infinite trees. Math. Proc. Camb. Philos. Soc. 61(3), 697–720 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Rado, Partial well-ordering of sets of vectors. Mathematika 1, 88–95 (1954)

    Article  MathSciNet  Google Scholar 

  26. F.P. Ramsey, On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930)

    Article  MathSciNet  Google Scholar 

  27. H. Rice, Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 74, 358–366 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Robertson, P. Seymour, Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Robertson, P. Seymour, Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Seese, The structure of models of decidable monadic theories of graphs. Ann. Pure Appl. Log. 53(2), 169–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Thomas, Well-quasi-ordering infinite graphs with forbidden finite planar minor. Trans. Am. Math. Soc. 312(1), 279–313 (1989)

    Article  MATH  Google Scholar 

  32. B. Trakhtenbrot, Impossibility of an algorithm for the decision problem on finite classes. Dokl. Akad. Nauk SSSR 70, 569–572 (1950)

    Google Scholar 

  33. K. Wagner, Über einer Eigenschaft der ebener Complexe. Math. Ann. 14, 570–590 (1937)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Downey, R.G., Fellows, M.R. (2013). Well-Quasi-Orderings and the Robertson–Seymour Theorems. In: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-5559-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5559-1_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5558-4

  • Online ISBN: 978-1-4471-5559-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics