Skip to main content

Flame Studies of Oxygenates

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents a comprehensive review of flame studies performed on oxygenated hydrocarbons or oxygenates of general formula CxHyOz. In particular those studies in which the authors have measured laminar flame speeds or have concentrated on speciation in flames. It is the first time that such tabulation is performed and summarizes the work carried out since the 1950s. In addition, the methods employed in determining flame speeds are outlined and their strengths and weaknesses highlighted. In a similar fashion the various diagnostic methods for measuring species concentrations in situ are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnew WG, Agnew JT (1965) Composition of the diethyl ether—air two-stage reaction stabilized in a flat-flame burner. In: Tenth symposium (international) on combustion, pp 123–138

    Google Scholar 

  • Bahrini C, Herbinet O, Glaude PA et al (2012) Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS. Chem Phys Lett 534:1–7

    Google Scholar 

  • Battin-Leclerc F (2008) Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog Energy Combust Sci 34(4):440–498

    Google Scholar 

  • Battin-Leclerc F, Konnov AA, Jaffrezo JL et al (2008) To better understand the formation of short-chain acids in combustion systems. Combust Sci Technol 180(2):343–370

    Google Scholar 

  • Biordi JC (1977) Molecular beam mass spectrometry for studying the fundamental chemistry of flames. Prog Energy Combust Sci 3:151–173

    Google Scholar 

  • Black G, Pichon S et al (2007) An experimental and modelling study of the combustion of acetone. In: Third European combustion meeting

    Google Scholar 

  • Bosschaart KJ, de Goey LPH (2003) Detailed analysis of the heat flux method for measuring burning velocities. Combust Flame 132:170–180

    Google Scholar 

  • Bosschaart KJ, de Goey LPH (2004a) The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust Flame 136:261–269

    Google Scholar 

  • Bosschaart KJ, de Goey LPH (2004b) Extension of the heat flux method to subatmospheric pressures. Combust Sci Technol 176:1537–1564

    Google Scholar 

  • Botha JP, Spalding DB (1954) The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc Royal Soc Lond Ser. A 225:71–96

    Google Scholar 

  • Brackmann C, Bood J, Alden M et al (2006) Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods. Combust Sci Technol 178(6):1165–1184

    Google Scholar 

  • Bradley JN, Jones GA (1966) Stabilized low temperature flames of acetaldehyde and propionaldehyde—a mass spectrometric study. Combust Flame 10(3):259–266

    Google Scholar 

  • Bradley D, Lawes M, Mansour MS (2009) Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 mpa. Combust Flame 156(7):1462–1470

    Google Scholar 

  • Branch MC, Sadeqi ME, Alfarayedhi AA et al (1991) Measurements of the structure of laminar, premixed flames of CH4/NO2/O2 and CH2O/NO2/O2 mixtures. Combust Flame 83(3–4):228–239

    Google Scholar 

  • Broustail G, Seers P, Halter F et al (2011) Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends. Fuel 90(1):1–6

    Google Scholar 

  • Brown MJ, Smith DB (1994) Aspects of nitrogen flame chemistry revealed by burning velocity modeling. Proc Combust Inst 25:1011–1018

    Google Scholar 

  • Burke MP, Chen Z, Ju Y, Dryer FL (2009) Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust Flame 156:771–779

    Google Scholar 

  • Burluka AA, Harker M, Osman H et al (2010) Laminar burning velocities of three C3H6O isomers at atmospheric pressure. Fuel 89(10):2864–2872

    Google Scholar 

  • Catalanotti E, Hughes KJ, Pourkashanian M, Wilson CW (2011) Development of a chemical reaction mechanism for alternative aviation fuels. Energy Fuels 25:1465–1473

    Google Scholar 

  • Cattolica RJ, Yoon S, Knuth EL (1982) OH concentration in an atmospheric-pressure methane-air flame from molecular-beam mass spectrometry and laser-absorption spectroscopy. Combust Sci Technol 28:225–239

    Google Scholar 

  • Chen Z, Wei L, Huang Z et al (2009) Measurement of laminar burning velocities of dimethyl ether-air premixed mixtures with N2 and CO2 dilution. Energy Fuels 23(1):735–739

    Google Scholar 

  • Chen Z, Wei L, Gu X et al (2010) Study of low-pressure premixed dimethyl ether/hydrogen/oxygen/argon laminar flames with photoionization mass spectrometry. Energy Fuels 24:1628–1635

    Google Scholar 

  • Chen Z, Tang C, Fu J et al (2012) Experimental and numerical investigation on diluted DME flames: thermal and chemical kinetic effects on laminar flame speeds. Fuel 102:567–573

    Google Scholar 

  • Cheskis S (1999) Quantitative measurements of absolute concentrations of intermediate species in flames. Prog Energy Combust Sci 25:233–252

    Google Scholar 

  • Cheskis S, Goldman A (2009) Laser diagnostics of trace species in low-pressure flat flame. Prog Energy Combust Sci 35:365–382

    Google Scholar 

  • Chong CT, Hochgreb S (2011) Measurements of laminar flame speeds of acetone/methane/air mixtures. Combust Flame 158(3):490–500

    Google Scholar 

  • Chong CT, Hochgreb S (2011b) Measurements of laminar flame speeds of liquid fuels: Jet-a1, diesel, palm methyl esters and blends using particle imaging velocimetry (piv). Proc Combust Inst 33:979–986

    Google Scholar 

  • Chung GA, Akih-Kumgeh B et al (2012) NOx formation and flame velocity profiles of iso- and n-isomers of butane and butanol. Proc Combust Inst 34:831–838

    Google Scholar 

  • Cool TA, Wang J, Hansen N et al (2007) Photoionization mass spectrometry and modeling studies of the chemistry of fuel-rich dimethyl ether flames. Proc Combust Inst 31:285–293

    Google Scholar 

  • Dagaut P, Cathonnet M (2006) The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling. Prog Energy Combust Sci 32(1):48–92

    Google Scholar 

  • Dagaut P, Togbe C (2008) Experimental and modeling study of the kinetics of oxidation of ethanol-gasoline surrogate mixtures (E85 surrogate) in a jet-stirred reactor. Energy Fuels 22(5):3499–3505

    Google Scholar 

  • Daily JW (1997) Laser induced fluorescence in flames. Prog Energy Combust Sci 23:133–199

    Google Scholar 

  • Daly CA, Simmie JM, Wurmel J et al (2001) Burning velocities of dimethyl ether and air. Combust Flame 125(4):1329–1340

    Google Scholar 

  • Dayma G, Gail S, Dagaut P (2008) Experimental and kinetic modeling study of the oxidation of methyl hexanoate. Energy Fuels 22(3):1469–1479

    Google Scholar 

  • Dayma G, Sarathy SM, Togbe C et al (2011) Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. Proc Combust Inst 33:1037–1043

    Google Scholar 

  • Dayma G, Halter F, Foucher F et al (2012a) Experimental and detailed kinetic modeling study of ethyl pentanoate (ethyl valerate) oxidation in a jet stirred reactor and laminar burning velocities in a spherical combustion chamber. Energy Fuels 26(8):4735–4748

    Google Scholar 

  • Dayma G, Halter F, Foucher F et al (2012b) Laminar burning velocities of C4–C7 ethyl esters in a spherical combustion chamber: Experimental and detailed kinetic modeling. Energy Fuels 26:6669–6677

    Google Scholar 

  • de Goey LPH, van Maaren A, Quax RM (1993) Stabilization of adiabatic premixed laminar flames on a flat burner. Combust Sci Technol 92:201–207

    Google Scholar 

  • De Vries J, Lowry WB, Serinyel Z et al (2011) Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm. Fuel 90(1):331–338

    Google Scholar 

  • Decottignies V, Gasnot L, Pauwels JF (2002) A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions. Combust Flame 130(3):225–240

    Google Scholar 

  • Desgroux P, Gasnot L, Pauwels JF et al (1994) A comparison of ESR and LIF hydroxyl radical measurements in flame. Combust Sci Technol 100:379–384

    Google Scholar 

  • Desgroux P, Gasnot L, Pauwels JF et al (1995) Correction of LIF temperature measurements for laser absorption and fluorescence trapping in a flame. Application to the thermal perturbation study induced by a sampling probe. Appl Phys B 61:401–407

    Google Scholar 

  • Di YG, Huang ZH, Zhang N et al (2009) Measurement of laminar burning velocities and Markstein lengths for diethyl ether-air mixtures at different initial pressure and temperature. Energy Fuels 23:2490–2497

    Google Scholar 

  • Dias V, Renard C, Van Tiggelen PJ et al (2004) Mass spectrometry, gas chromatography, and coupling GC/MS as complementary technics for flame structure analysis. Combust Sci Technol 176:1419–1435

    Google Scholar 

  • Dias V, Duynslaegher C, Contino F et al (2012) Experimental and modeling study of formaldehyde combustion in flames. Combust Flame 159(5)

    Google Scholar 

  • Dievart P, Won SH, Dooley S et al (2012) A kinetic model for methyl decanoate combustion. Combust Flame 159(5):1793–1805

    Google Scholar 

  • Dooley S, Curran HJ, Simmie JM (2008) Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate. Combust Flame 153(1–2):2–32

    Google Scholar 

  • Dooley S, Burke MP, Chaos M et al (2010) Methyl formate oxidation: Speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. Int J Chem Kinet 42(9):527–549

    Google Scholar 

  • Dooley S, Dryer FL, Yang B et al (2011) An experimental and kinetic modeling study of methyl formate low-pressure flames. Combust Flame 158(4):732–741

    Google Scholar 

  • Doute C, Delfau JL, Akrich R et al (1997) Experimental study of the chemical structure of low-pressure premixed n-heptane-O2-Ar and iso-octane-O2-Ar flames. Combust Sci Technol 124:249–276

    Google Scholar 

  • Dyakov IV, Konnov AA, De Ruyck J et al (2001) Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures. Combust Sci Technol 172:81–96

    Google Scholar 

  • Egolfopoulos FN, Du DX, Law CK (1992a) A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock-tubes. Combust Sci Technol 83(1–3):33–75

    Google Scholar 

  • Egolfopoulos FN, Du DX, Law CK (1992b) A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. Proc Combust Inst 24:833–841

    Google Scholar 

  • Eisazadeh-Far K, Moghaddas A, et al. (2011) Laminar burning speeds of ethanol/air/diluent mixtures. Proc Combust Inst 33:1021–1027

    Google Scholar 

  • Evertsen R, van Oijen JA, Hermanns RTE et al (2003) Measurements of the absolute concentrations of HCO and CH2 in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combust Flame 135:57–64

    Google Scholar 

  • Farrell RJ, Johnston RJ, Androulakis IP (2004) Molecular structure effects on laminar burning velocities at elevated temperature and pressure, SAE Paper 2004-01-2936

    Google Scholar 

  • Feng Q, Wang YL et al (2010) Fundamental study of the oxidation characteristics and pollutant emissions of model biodiesel fuels. Ind Eng Chem Res 49(21):10392–10398

    Google Scholar 

  • Fisher EM, Pitz WJ, Curran HJ et al (2000) Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc Combust Inst 28:1579–1586

    Google Scholar 

  • Franklin PM, Koshland CP, Lucas D, Sawyer RF (2001) Evaluation of combustion by-products of MTBE as a component of reformulated gasoline. Chemosphere 42:861–872

    Google Scholar 

  • Frassoldati A, Grana R, Faravelli T et al (2012) Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust Flame 159(7):2295–2311

    Google Scholar 

  • Fristrom RM, Westenberg AA (1965) Flame structure. McGraw-Hill, New York

    Google Scholar 

  • Frye CA, Boehman AL, Tijm PJA (1999) Comparison of co and no emissions from propane, n-butane, and dimethyl ether premixed flames. Energy Fuels 13(3):650–654

    Google Scholar 

  • Gail S, Thomson MJ, Sarathy SM et al (2007) A wide-ranging kinetic modeling study of methyl butanoate combustion. Proc Combust Inst 31:305–311

    Google Scholar 

  • Gail S, Sarathy SM, Thomson MJ et al (2008) Experimental and chemical kinetic modeling study of small methyl esters oxidation: methyl (e)-2-butenoate and methyl butanoate. Combust Flame 155(4):635–650

    Google Scholar 

  • Galmiche B, Togbe C, Dagaut P et al (2011) Experimental and detailed kinetic modeling study of the oxidation of 1-propanol in a pressurized jet-stirred reactor (JSR) and a combustion bomb. Energy Fuels 25(5):2013–2021

    Google Scholar 

  • Gasnot L, Decottignies V, Pauwels JF (2004) Ethyl acetate oxidation in flame condition: an experimental study. Fuel 83(4–5):463–470

    Google Scholar 

  • Gibbs GJ, Calcote HF (1959) Effect of molecular structure on burning velocity. J Chem Eng Data 4:226–237

    Google Scholar 

  • Gillespie F, Metcalfe WK, Dirrenberger P et al (2012) Measurements of flat-flame velocities of diethyl ether in air. Energy 43(1):140–145

    Google Scholar 

  • Glaude PA, Pitz WJ et al (2005) Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame. Proc Combust Inst 30:1111–1118

    Google Scholar 

  • Gong J, Jin C, Huang ZH et al (2010) Study on laminar burning characteristics of premixed high-octane fuel-air mixtures at elevated pressures and temperatures. Energy Fuels 24:965–972

    Google Scholar 

  • Goswami M, Derks S, Coumans K, et al (2013) The Effect of elevated pressures on the laminar burning velocity of methane + air mixtures. Combust Flame (submitted)

    Google Scholar 

  • Grana R, Frassoldati A, Faravelli T et al (2010) An experimental and kinetic modeling study of combustion of isomers of butanol. Combust Flame 157(11):2137–2154

    Google Scholar 

  • Grana R, Frassoldati A, Cuoci A et al (2012a) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note i: Lumped kinetic model of methyl butanoate and small methyl esters. Energy 43(1):124–139

    Google Scholar 

  • Grana R, Frassoldati A, Saggese C et al (2012) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate—note ii: lumped kinetic model of decomposition and combustion of methyl esters up to methyl decanoate. Combust Flame 159(7):2280–2294

    Google Scholar 

  • Gu X, Huang Z, Li Q et al (2009) Measurements of laminar burning velocities and Markstein lengths of n-butanol-air premixed mixtures at elevated temperatures and pressures. Energy Fuels 23:4900–4907

    Google Scholar 

  • Gu X, Huang Z, Wu S et al (2010) Laminar burning velocities and flame instabilities of butanol isomers-air mixtures. Combust Flame 157(12):2318–2325

    Google Scholar 

  • Gu X, Li Q, Huang Z (2011a) Laminar burning characteristics of diluted n-butanol/air mixtures. Combust Sci Technol 183(12):1360–1375

    Google Scholar 

  • Gu X, Li Q, Huang Z et al (2011b) Measurement of laminar flame speeds and flame stability analysis of tert-butanol-air mixtures at elevated pressures. Energy Conv Manage 52(10):3137–3146

    Google Scholar 

  • Gulder OL (1983a) Laminar burning velocities of methanol, isooctane and isooctane/methanol blends. Combust Sci Technol 33(1–4):179–192

    Google Scholar 

  • Gulder OL (1983b) Laminar burning velocities of methanol, ethanol, and isooctane-air mixtures. Proc Combust Inst 19:275–281

    Google Scholar 

  • Hakka MH, Bennadji H, Biet J et al (2010) Oxidation of methyl and ethyl butanoates. Int J Chem Kinet 42(4):226–252

    Google Scholar 

  • Hansen N, Klippenstein SJ, Miller JA et al (2006a) Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames. J Phys Chem A 110:3670–3678

    Google Scholar 

  • Hansen N, Klippenstein SJ, Taatjes CA et al (2006b) Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. J Phys Chem 110:4376–4388

    Google Scholar 

  • Hansen N, Cool TA, Westmoreland PR et al (2009) Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Prog Energy Combust Sci 35(2):168–191

    Google Scholar 

  • Hartlieb AT, Atakan B, Kohse-Hoinghaus K (2000) Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame. Combust Flame 121:610–624

    Google Scholar 

  • Hayes CJ, Burgess DR Jr (2009) Exploring the oxidative decompositions of methyl esters: Methyl butanoate and methyl pentanoate as model compounds for biodiesel. Proc Combust Inst 32:263–270

    Google Scholar 

  • Herbinet O, Pitz WJ et al (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154(3):507–528

    Google Scholar 

  • Herbinet O, Biet J et al (2011) Modeling study of the low-temperature oxidation of large methyl esters from C(11) to C(19). Proc Combust Inst 33:391–398

    Google Scholar 

  • Herbon JT, Hanson RK, Golden DM, Bowman CT (2002) A shock tube study of the enthalpy of formation of OH. Proc Combust Inst 29:1201–1208

    Google Scholar 

  • Hori M (1980) Effects of probing conditions on NO/NOx ratios. Combust Sci Technol 23:131–135

    Google Scholar 

  • Huang Z, Wang Q, Yu J et al (2007) Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures. Fuel 86(15):2360–2366

    Google Scholar 

  • Huang Z, Chen G, Chen C et al (2008) Experimental study on premixed combustion of dimethyl ether-hydrogen-air mixtures. Energy Fuels 22(2):967–971

    Google Scholar 

  • Huynh LK, Lin KC, Violi A (2008) Kinetic modeling of methyl butanoate in shock tube. J Phys Chem A 112(51):13470–13480

    Google Scholar 

  • Hwang C-H, Lee C-E, Lee K-M (2009) Fundamental studies of NO(x) emission characteristics in dimethyl ether (DME)/air non-premixed flames. Energy Fuels 23(1):754–761

    Google Scholar 

  • Johansson O, Bood J, Li B et al (2011) Photofragmentation laser-induced fluorescence imaging in premixed flames. Combust Flame 158:1908–1919

    Google Scholar 

  • Kaiser EW, Wailington TJ, Hurley MD et al (2000) Experimental and modeling study of premixed atmospheric-pressure dimethyl ether-air flames. J Phys Chem A 104(35):8194–8206

    Google Scholar 

  • Kasper TS, Osswald P, Kamphus M et al (2007) Ethanol flame structure investigated by molecular beam mass spectrometry. Combust Flame 150(3):220–231

    Google Scholar 

  • Kasper T, Osswald P, Struckmeier U et al (2009) Combustion chemistry of the propanol isomers—investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry. Combust Flame 156(6):1181–1201

    Google Scholar 

  • Kasper T, Struckmeier U, Osswald P et al (2009b) Structure of a stoichiometric propanal flame at low pressure. Proc Combust Inst 32:1285–1292

    Google Scholar 

  • Kasper T, Lucassen A, Jasper AW et al. (2011) Identification of tetrahydrofuran reaction pathways in premixed flames. Z Phys Chemie-Int J Res Phys Chem Chem Phys 225(11-12):1237–1270

    Google Scholar 

  • Kohse-Hoinghaus K (1994) Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Prog Energy Combust Sci 20:203–279

    Google Scholar 

  • Kohse-Hoinghaus K, Brockhinke A (2009) Combust Exp Shock Waves 45:349–364

    Google Scholar 

  • Kohse-Hoinghaus K, Barlow RS, Alden M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30:89–123

    Google Scholar 

  • Konnov AA, Riemeijer R, de Goey LPH (2010) Adiabatic laminar burning velocities of CH4 + H2 + air flames at low pressures. Fuel 89:1392–1396

    Google Scholar 

  • Konnov AA, Meuwissen RJ, De Goey LPH (2011) The temperature dependence of the laminar burning velocity of ethanol flames. Proc Combust Inst 33:1011–1019

    Google Scholar 

  • Kramlich JC, Malte PC (1978) Modeling and measurements of sample probe effects on pollutant gasses drawn from flame zone. Combust Sci Technol 18:91–104

    Google Scholar 

  • Labbe NJ, Seshadri V, Kasper T et al (2013) Flame chemistry of tetrahydropyran as a model heteroatomic biofuel. Proc Combust Inst 34:259–267

    Google Scholar 

  • Lai JYW, Lin KC, Violi A (2011) Biodiesel combustion: advances in chemical kinetic modeling. Prog Energy Combust Sci 37(1):1–14

    Google Scholar 

  • Law CK, Sung CJ (2010) Structure, aerodynamics and geometry of premixed flamlets. Prog Energy Combust Sci 26:459–505

    Google Scholar 

  • Lefkowitz JK, Heyne JS, Won SH et al (2012) A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame. Combust Flame 159(3):968–978

    Google Scholar 

  • Leplat N, Vandooren J (2010) Experimental investigation and numerical simulation of the structure of CH3CHO/O2/Ar flames at different equivalence ratios. Combust Sci Technol 182(4–6):436–448

    Google Scholar 

  • Leplat N, Vandooren J (2012) Numerical and experimental study of the combustion of acetic acid in laminar premixed flames. Combust Flame 159(2):493–499

    Google Scholar 

  • Leplat N, Seydi A, Vandooren J (2008) An experimental study of the structure of a stoichiometric ethanol/oxygen/argon flame. Combust Sci Technol 180(3):519–532

    Google Scholar 

  • Leplat N, Dagaut P, Togbe C et al (2011) Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust Flame 158(4):705–725

    Google Scholar 

  • Lewis B, Von Elbe G (1961) Combustion, flames and explosions of gasses. Cambridge University Press, New York

    Google Scholar 

  • Li J, Zhao ZW, Kazakov A et al (2007) A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 39(3):109–136

    Google Scholar 

  • Li YY, Wei LX, Tian ZY et al (2008) A comprehensive experimental study of low-pressure premixed c-3-oxygenated hydrocarbon flames with tunable synchrotron photoionization. Combust Flame 152 (3):336–359

    Google Scholar 

  • Li Q, Fu J, Wu X et al (2011) Laminar flame speeds of DMF/iso-octane-air-N2/CO2 mixtures. Energy Fuels 26(2):917–925

    Google Scholar 

  • Liao SY, Jiang DM, Huang ZH et al (2007a) Laminar burning velocities for mixtures of methanol and air at elevated temperatures. Energy Conv Manage 48(3):857–863

    Google Scholar 

  • Liao SY, Jiang DM, Huang ZH et al (2007b) Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl Therm Eng 27(2–3):374–380

    Google Scholar 

  • Lin Z, Han D, Li S et al (2009a) Combustion intermediates in fuel-rich 1,4-dioxane flame studied by tunable synchrotron vacuum ultraviolet photoionization. J Phys Chem A 113(9):1800–1806

    Google Scholar 

  • Lin ZK, Han DL, Li SF et al (2009b) Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame. J Chem Phys 130(15)

    Google Scholar 

  • Liu W, Kelley AP, Law CK (2011) Non-premixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate. Proc Combust Inst 33:995–1002

    Google Scholar 

  • Lowry WB, Serinyel Z, Krejci MC et al (2011) Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length. Proc Combust Inst 33:929–937

    Google Scholar 

  • Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kinet 31:183–220

    Google Scholar 

  • Marshall SP, Taylor S, Stone CR et al. (2011) Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals. Combust Flame 158(10):1920–1932

    Google Scholar 

  • Mcilroy A, Hain TD, Michelsen HA et al (2000) A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames. Proc Combust Inst 28:1647–1653

    Google Scholar 

  • Metcalfe WK, Togbe C, Dagaut P et al. (2009) A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation. Combust Flame 156(1):250–260

    Google Scholar 

  • Metghalchi M, Keck JC (1982) Burning velocities of mixtures of air with methanol, isooctane, and indolene at high-pressure and temperature. Combust Flame 48(2):191–210

    Google Scholar 

  • Naucler JD, Christensen M, Nilsson EJK et al (2012) Oxy-fuel combustion of ethanol in premixed flames. Energy Fuels 26(7):0

    Google Scholar 

  • Nilsson EJK, De Goey LPH, Konnov AA (2013) Laminar burning velocities of acetone in air at room and elevated temperatures. Fuel 105:496–502

    Google Scholar 

  • Oldenhove de Guertechin L, Vandooren J et al (1983) Mass-spectrometric analysis of onedimensional CH2O/O2 flames stabilized at low-pressures. J Chimie Phys Physico-Chimie Biol 80(7–8):583–594

    Google Scholar 

  • Olsson JO, Olsson IBM, Smooke MD (1989) Computer modeling of a premixed laminar formaldehyde flame. J Phys Chem 93(8):3107–3112

    Google Scholar 

  • Osswald P, Struckmeier U, Kasper T et al (2007) Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters. J Phys Chem A 111(19):4093–4101

    Google Scholar 

  • Osswald P, Gueldenberg H, Kohse-Hoeinghaus K et al (2011) Combustion of butanol isomers—a detailed molecular beam mass spectrometry investigation of their flame chemistry. Combust Flame 158(1):2–15

    Google Scholar 

  • Pichon S, Black G, Chaumeix N et al (2009) The combustion chemistry of a fuel tracer: measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone. Combust Flame 156(2):494–504

    Google Scholar 

  • Pitz WJ, Mueller CJ (2011) Recent progress in the development of diesel surrogate fuels. Prog Energy Combust Sci 37(3):330–350

    Google Scholar 

  • Qin X, Ju YG (2005) Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures. Proc Combust Inst 30:233–240

    Google Scholar 

  • Ranzi E, Frassoldati A, Grana R et al (2012) Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog Energy Combust Sci 38(4):468–501

    Google Scholar 

  • Ryan TWI, Lestz SS (1980) The laminar burning velocity of isooctane, n-heptane, methanol, methane, and propane at elevated temperature and pressures in the presence of a diluent, SAE paper no. 800103

    Google Scholar 

  • Saeed K, Stone CR (2004) Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust Flame 139(1–2):152–166

    Google Scholar 

  • Sarathy SM, Gail S, Syed SA et al (2007) A comparison of saturated and unsaturated c-4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor. Proc Combust Inst 31:1015–1022

    Google Scholar 

  • Sarathy SM, Thomson MJ, Pitz WJ et al (2011) An experimental and kinetic modeling study of methyl decanoate combustion. Proc Combust Inst 33:399–405

    Google Scholar 

  • Sarathy SM, Vranckx S, Yasunaga K et al (2012) A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust Flame 159(6):2028–2055

    Google Scholar 

  • Saxena P, Williams FA (2007) Numerical and experimental studies of ethanol flames. Proc Combust Inst 31:1149–1156

    Google Scholar 

  • Schoenung SM, Hanson RK (1981) CO and temperature measurements in a flat flame by laser absorption techniques. Combust Sci Technol 24:227–237

    Google Scholar 

  • Selle L, Poinsot T, Ferrer B (2011) Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner. Combust Flame 158:146–154

    Google Scholar 

  • Serinyel Z, Chaumeix N, Black G et al (2010) Experimental and chemical kinetic modeling study of 3-pentanone oxidation. J Phys Chem A 114(46):12176–12186

    Google Scholar 

  • Seshadri K, Lu TF, Herbinet O et al (2009) Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proc Combust Inst 32:1067–1074

    Google Scholar 

  • Sinha A, Thomson MJ (2004) The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures. Combust Flame136 (4):548–556

    Google Scholar 

  • Sjöholm J, Rosell J, Li B et al (2013) Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc Combust Inst 34:1475–1482

    Google Scholar 

  • Skovorodko PA, Tereshchenko AG, Knyazkov DA et al (2012) Experimental and numerical study of thermocouple-induced perturbations of the methane flame structure. Combust Flame 159:1009–1015

    Google Scholar 

  • Somers KP, Simmie JM, Gillespie F et al (2013) A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proc Combust Inst 34:225–232

    Google Scholar 

  • Sutton JA, Williams BA, Fleming JW (2008) Combust Flame 153:465–478

    Google Scholar 

  • Tahtouh T, Halter F, Mounaim-Rousselle C (2009) Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combust Flame 156:1735–1743

    Google Scholar 

  • Tian G, Daniel R, Li H et al (2010) Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline. Energy Fuels 24:3898–3905

    Google Scholar 

  • Tian ZY, Yuan T, Fournet R et al (2011) An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combust Flame 158(4):756–773

    Google Scholar 

  • Togbe C, Dagaut P, Mze-Ahmed A et al (2010) Experimental and detailed kinetic modeling study of 1-hexanol oxidation in a pressurized jet-stirred reactor and a combustion bomb. Energy Fuels 24:5859–5875

    Google Scholar 

  • Togbe C, Dagaut P, Halter F et al (2011a) 2-propanol oxidation in a pressurized jet-stirred reactor (JSR) and combustion bomb: experimental and detailed kinetic modeling study. Energy Fuels 25:676–683

    Google Scholar 

  • Togbe C, Halter F, Foucher F et al (2011b) Experimental and detailed kinetic modeling study of 1-pentanol oxidation in a JSR and combustion in a bomb. Proc Combust Inst 33:367–374

    Google Scholar 

  • Tran LS, Sirjean B, Glaude PA et al (2012) Progress in detailed kinetic modelling of the combustion of oxygenated components of biofuels. Energy 43:4–18

    Google Scholar 

  • van Maaren A, de Goey LPH (1994) Stretch and the adiabatic burning velocity of methane- and propane-air flames. Combust Sci Technol 102:309–314

    Google Scholar 

  • van Maaren A, Thung DS, de Goey LPH (1994) Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust Sci Technol 96:327–344

    Google Scholar 

  • Vancoillie J, Christensen M, Nilsson EJK et al (2012) Temperature dependence of the laminar burning velocity of methanol flames. Energy Fuels 26(3):1557–1564

    Google Scholar 

  • Vandooren J, Deguertechin LO, Vantiggelen PJ (1986) Kinetics in a lean formaldehyde flame. Combust Flame 64:127–139

    Google Scholar 

  • Varea E, Modica V, Vandel A et al (2012) Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: application to laminar spherical flames for methane, ethanol and isooctane/air mixtures. Combust Flame 159(2):577–590

    Google Scholar 

  • Varea E, Modica V, Renou B et al (2013) Pressure effects on laminar burning velocities and Markstein lengths for isooctane–ethanol–air mixtures. Proc Combust Inst 34:735–744

    Google Scholar 

  • Veloo PS, Egolfopoulos FN (2011a) Flame propagation of butanol isomers/air mixtures. Proc Combust Inst 33:987–993

    Google Scholar 

  • Veloo PS, Egolfopoulos FN (2011) Studies of n-propanol, iso-propanol, and propane flames. Combust Flame 158(3):501–510

    Google Scholar 

  • Veloo PS, Wang YL, Egolfopoulos FN et al (2010) A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust Flame 157(10):1989–2004

    Google Scholar 

  • Veloo PS, Dagaut P, Togbe C et al (2012) Jet-stirred reactor and flame studies of propanal oxidation. Proc Combust Inst 34:599–606

    Google Scholar 

  • Vovelle Ch, Delfau J-L, Pillier L (2009) Combust Exp Shock Waves 45:365–382

    Google Scholar 

  • Wang CH, Ueng GJ, Jehng JJ (1997) The extinction limits and near-limits behaviors of premixed ethanol/air flame. Int Commun Heat Mass Transf 24(5):695–708

    Google Scholar 

  • Wang J, Struckmeier U, Yang B et al (2008a) Isomer-specific influences on the composition of reaction intermediates in dimethyl ether/propene and ethanol/propene flame. J Phys Chem A 112(39):9255–9265

    Google Scholar 

  • Wang T, Li S, Lin Z et al (2008b) Experimental study of laminar lean premixed methylmethacrylate/oxygen/argon flame at low pressure. J Phys Chem A 112(6):1219–1227

    Google Scholar 

  • Wang J, Chaos M, Yang B et al (2009a) Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. Phys Chem Chem Phys 11(9):1328–1339

    Google Scholar 

  • Wang YL, Holley AT, Ji C et al (2009b) Propagation and extinction of premixed dimethyl-ether/air flames. Proc Combust Inst 32:1035–1042

    Google Scholar 

  • Wang YL, Feng Q, Egolfopoulos FN et al (2011) Studies of c(4) and c(10) methyl ester flames. Combust Flame 158(8):1507–1519

    Google Scholar 

  • Wei LJ, Tang CL, Man XJ et al (2012a) High-temperature ignition delay times and kinetic study of furan. Energy Fuels 26(4):2075–2081

    Google Scholar 

  • Wei L, Li Z, Tong L et al (2012b) Primary combustion intermediates in lean and rich low-pressure premixed laminar 2-methylfuran/oxygen/argon flames. Energy Fuels 26:6651–6660

    Google Scholar 

  • Westbrook CK, Pitz WJ, Westmoreland PR et al (2009) A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames. Proc Combust Inst 32:221–228

    Google Scholar 

  • Westbrook CK, Naik CV, Herbinet O et al (2011) Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust Flame 158(4):742–755

    Google Scholar 

  • Wiser W, Hill G (1955) A kinetic comparison of the combustion of methyl alcohol and methane. In: 5th symposium (international) on combustion, vol 5, pp 553–558

    Google Scholar 

  • Wolfrum J (1998) Lasers in combustion: from basic theory to practical devices. Proc Combust Inst 27:1–41

    Google Scholar 

  • Wu CK, Law CK (1984) On the determination of laminar flame speeds from stretched flames. Proc Combust Inst 20:1941–1949

    Google Scholar 

  • Wu X, Huang Z, Jin C et al (2009a) Measurements of laminar burning velocities and Markstein lengths of 2,5-dimethylfuran-air-diluent premixed flames. Energy Fuels 23:4355–4362

    Google Scholar 

  • Wu X, Huang Z, Yuan T et al (2009) Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization. Combust Flame 156(7):1365–1376

    Google Scholar 

  • Wu X, Huang Z, Jin C et al (2011a) Laminar burning velocities and Markstein lengths of 2,5-dimethylfuran-air premixed flames at elevated temperatures. Combust Sci Technol 183(3):220–237

    Google Scholar 

  • Wu X, Huang Z, Wang X et al (2011) Laminar burning velocities and flame instabilities of 2,5-dimethylfuran-air mixtures at elevated pressures. Combust Flame 158(3):539–546

    Google Scholar 

  • Wu X, Li Q, Fu J et al (2012) Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures. Fuel 95(1):234–240

    MathSciNet  Google Scholar 

  • Xu H, Yao C, Yuan T et al (2011) Measurements and modeling study of intermediates in ethanol and dimethy ether low-pressure premixed flames using synchrotron photoionization. Combust Flame 158(9):1673–1681

    Google Scholar 

  • Yahyaoui M, Djebaieli-Chaumeix N, Dagaut P et al (2007) Experimental and modelling study of gasoline surrogate mixtures oxidation in jet stirred reactor and shock tube. Proc Combust Inst 31:385–391

    Google Scholar 

  • Yahyaoui A, Djebaili-Chaumeix N, Dagaut P et al (2008) Ethyl tertiary butyl ether ignition and combustion using a shock tube and spherical bomb. Energy Fuels 22(6):3701–3708

    Google Scholar 

  • Yang B, Li Y, Wei L et al (2007a) An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proc Combust Inst 31:555–563

    Google Scholar 

  • Yang B, Osswald P, Li Y et al (2007) Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure. Combust Flame 148(4):198–209

    Google Scholar 

  • Yang B, Westbrook CK, Cool TA et al (2011) Fuel-specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers. Phys Chem Chem Phys 13(15):6901–6913

    Google Scholar 

  • Yang B, Westbrook CK, Cool TA et al. (2011) The effect of carbon-carbon double bonds on the combustion chemistry of small fatty acid esters. Z Phys Chemie-Int J Res Phys Chem Chem Phys 225(11–12):1293–1314

    Google Scholar 

  • Yasunaga K, Kubo S, Hoshikawa H et al (2008) Shock-tube and modeling study of acetaldehyde pyrolysis and oxidation. Int J Chem Kinet 40(2):73–102

    Google Scholar 

  • Yeung C, Thomson MJ (2012) Experimental and kinetic modeling study of 1-hexanol combustion in an opposed-flow diffusion flame. Proc Combust Inst 34:795–802

    Google Scholar 

  • Yu W, Chen G, Huang Z et al (2012) Experimental and kinetic modeling study of methyl butanoate and methyl butanoate/methanol flames at different equivalence ratios and c/o ratios. Combust Flame 159(1):44–54

    Google Scholar 

  • Zervas E (2005) Formation of organic acids from propane, isooctane and toluene/isooctane flames. Fuel 84(6):0

    Google Scholar 

  • Zhang Z, Huang Z, Wang X et al (2008) Measurements of laminar burning velocities and Markstein lengths for methanol-air-nitrogen mixtures at elevated pressures and temperatures. Combust Flame 155(3):358–368

    Google Scholar 

  • Zhang N, Di YG, Huang ZH et al (2009) Experimental study on combustion characteristics of n(2)-diluted diethyl ether-air mixtures. Energy Fuels 23:5798–5805

    Google Scholar 

  • Zhang J, Wei L, Man X et al (2012a) Experimental and modeling study of n-butanol oxidation at high temperature. Energy Fuels 26(6):3368–3380

    Google Scholar 

  • Zhang K, Moshammer K, Oßwald P et al (2012b) Experimental investigation of partially premixed, highly-diluted dimethyl ether flames at low temperatures. Proc Combust Inst 34:763–770

    Google Scholar 

  • Zhao Z, Kazakov A, Dryer FL (2004) Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combust Flame 139(1–2):52–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Konnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Nilsson, E.J.K., Konnov, A.A. (2013). Flame Studies of Oxygenates. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics