Skip to main content

Cardiovascular Response During Exercise

  • Chapter
  • First Online:
The Heart and Circulation
  • 1792 Accesses

Abstract

In contrast to the hitherto revived studies mainly performed on anesthetized, open-chest animals or on isolated heart preparations, the physiological events that occur in exercising animals or humans provide a unique insight into the function of the cardiovascular system at the limits of its capacity. Under such conditions, the role of central and peripheral circulations becomes more clearly defined and affords us with, as yet, the strongest evidence for the primal role of the peripheral circulation. It is not surprising that, given the lack of a unifying paradigm on the hemodynamic response to exercise, this field is fraught with many inconsistencies which, in the face of new studies, are becoming increasingly more difficult to reconcile. The argument pivots on the before-mentioned degree of contribution of central versus peripheral factors in the overall control of the circulatory response to exercise (for reviews, see [1–4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowland T. The circulatory response to exercise: role of the peripheral pump. Int J Sports Med. 2001;22(8):558–65.

    Article  PubMed  CAS  Google Scholar 

  2. Rowland TW. Circulatory responses to exercise. Chest. 2005;127(3):1023–30.

    Article  PubMed  Google Scholar 

  3. Calbet J, Joyner M. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation? Acta Physiol. 2010;199(4):393–406.

    Article  CAS  Google Scholar 

  4. Rowell LB. Ideas about control of skeletal and cardiac muscle blood flow (1876–2003): cycles of revision and new vision. J Appl Physiol. 2004;97(1):384–92.

    Article  PubMed  Google Scholar 

  5. Laughlin MH. Cardiovascular response to exercise. Am J Physiol. 1999;277(6 Pt 2):S244–59.

    PubMed  CAS  Google Scholar 

  6. Saltin B, et al. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162(3):421–36.

    Article  PubMed  CAS  Google Scholar 

  7. Rowell LB. Human circulation. Regulating during physical stress. New York: Oxford University Press; 1986.

    Google Scholar 

  8. Grant R. Observations on the blood circulation in voluntary muscle in man. Clin Sci. 1938;3(157):1937–8.

    Google Scholar 

  9. Barcroft H. Circulation in skeletal muscle. Handb Physiol. 1963;2:1353–85.

    Google Scholar 

  10. Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol Heart Circ Physiol. 1987;253(5):H993–1004.

    CAS  Google Scholar 

  11. Rushmer RF, et al. Continuous measurements of left ventricular dimensions in intact, unanesthetized dogs. Circ Res. 1954;2(1):14–21.

    Article  PubMed  CAS  Google Scholar 

  12. Guyton AC, et al. Instantaneous increase in mean circulatory pressure and cardiac output at onset of muscular activity. Circ Res. 1962;11(3):431–41.

    Article  PubMed  CAS  Google Scholar 

  13. Almen T, Nylander G. Serial phlebography of the normal lower leg during muscular contraction and relaxation. Acta Radiol. 1962;57:264.

    Article  PubMed  CAS  Google Scholar 

  14. Sheriff D, et al. Point: the muscle pump raises muscle blood flow during locomotion. J Appl Physiol. 2005;99(1):371–5.

    Article  PubMed  Google Scholar 

  15. Rowell LB, O'Leary DS, Kellogg Jr DL. Integration of cardiovascular control systems in dynamic exercise. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Bethesda: American Physiological Society; 1996. p. 778–81.

    Google Scholar 

  16. Delp M, Laughlin M. Regulation of skeletal muscle perfusion during exercise. Acta Physiol Scand. 1998;162(3):411–9.

    Article  PubMed  CAS  Google Scholar 

  17. Clifford PS, et al. Counterpoint: the muscle pump is not an important determinant of muscle blood flow during exercise. J Appl Physiol. 2005;99(1):372.

    PubMed  Google Scholar 

  18. Rothe CF. The muscle pump indeed raises muscle blood flow during locomotion. J Appl Physiol. 2005;99(2):773.

    Article  PubMed  Google Scholar 

  19. Laughlin MH. The muscle pump, what question do we want to answer? J Appl Physiol. 2005;99(2):774.

    Article  PubMed  Google Scholar 

  20. Laughlin MH, Schrage WG. Effects of muscle contraction on skeletal muscle blood flow: when is there a muscle pump? Med Sci Sports Exerc. 1999;31(7):1027.

    Article  PubMed  CAS  Google Scholar 

  21. Valic Z, Buckwalter JB, Clifford PS. Muscle blood flow response to contraction: influence of venous pressure. J Appl Physiol. 2005;98(1):72–6.

    Article  PubMed  Google Scholar 

  22. Corcondilas A, Koroxenidis GT, Shepherd JT. Effect of a brief contraction of forearm muscles on forearm blood flow. J Appl Physiol. 1964;19(1):142–6.

    PubMed  CAS  Google Scholar 

  23. Naik JS, et al. Rapid vasodilation in response to a brief tetanic muscle contraction. J Appl Physiol. 1999;87(5):1741–6.

    PubMed  CAS  Google Scholar 

  24. Tschakovsky ME, et al. Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation. J Appl Physiol. 2004;96(2):639–44.

    Article  PubMed  CAS  Google Scholar 

  25. Tschakovsky ME, Sheriff DD. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol. 2004;97(2):739–47.

    Article  PubMed  Google Scholar 

  26. Hamann JJ, Buckwalter JB, Clifford PS. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle. J Physiol. 2004;557(3):1013–20.

    Article  PubMed  CAS  Google Scholar 

  27. Tschakovsky ME, et al. Muscle blood-flow dynamics at exercise onset: do the limbs differ? Med Sci Sports Exerc. 2006;38(10):1811.

    Article  PubMed  Google Scholar 

  28. Lofving B, Mellander S. Some aspects of the basal tone of the blood vessels. Acta Physiol Scand. 1956;37(2–3):134–41.

    Article  PubMed  CAS  Google Scholar 

  29. Laughlin MH, et al. Control of blood flow to cardiac and skeletal muscle during exercise. Comp Physiol. 2011:705–69. http://dx.doi.org/10.1002/cphy.cp120116.

  30. Mitchell JH, Kaufman MP, Iwamoto GA. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol. 1983;45(1):229–42.

    Article  PubMed  CAS  Google Scholar 

  31. Mortensen SP, et al. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion. J Appl Physiol. 2009;107(6):1757–62.

    Article  PubMed  CAS  Google Scholar 

  32. Joyner M, Halliwill J. Neurogenic vasodilation in human skeletal muscle: possible role in contraction‐induced hyperaemia. Acta Physiol Scand. 2002;168(4):481–8.

    Article  Google Scholar 

  33. Ellsworth ML, et al. The erythrocyte as a regulator of vascular tone. Am J Physiol Heart Circ Physiol. 1995;269(6):H2155–61.

    CAS  Google Scholar 

  34. Ellsworth ML, et al. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology. 2009;24(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez-Alonso J, et al. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. J Physiol. 2008;586(9):2405–17.

    Article  PubMed  CAS  Google Scholar 

  36. Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R447–53.

    Article  PubMed  CAS  Google Scholar 

  37. Rosenmeier JB, Hansen J, González-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol. 2004;558(1):351–65.

    Article  PubMed  CAS  Google Scholar 

  38. Mortensen SP, et al. Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol. 2011;589(7):1847–57.

    Article  PubMed  CAS  Google Scholar 

  39. Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab. 2007;18(9):350–5.

    Article  PubMed  CAS  Google Scholar 

  40. Pittman RN. Erythrocytes: surveyors as well as purveyors of oxygen? Am J Physiol Heart Circ Physiol. 2010;298(6):H1637–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ellsworth ML. Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc. 2004;36(1):35.

    Article  PubMed  CAS  Google Scholar 

  42. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86.

    Article  PubMed  CAS  Google Scholar 

  43. Miyazaki S, et al. Changes of left ventricular diastolic function in exercising dogs without and with ischemia. Circulation. 1990;81(3):1058–70.

    Article  PubMed  CAS  Google Scholar 

  44. Rowland T. Echocardiography and circulatory response to progressive endurance exercise. Sports Med. 2008;38(7):541–51.

    Article  PubMed  Google Scholar 

  45. Rowland T. Endurance athletes stroke volume response to progressive exercise: a critical review. Sports Med. 2009;39(8):687–95.

    Article  PubMed  Google Scholar 

  46. Levine B, et al. Left ventricular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation. 1991;84(3):1016–23.

    Article  PubMed  CAS  Google Scholar 

  47. Carlsson M, et al. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;292(3):H1452–9.

    Article  PubMed  CAS  Google Scholar 

  48. Slordahl SA, et al. Atrioventricular plane displacement in untrained and trained females. Med Sci Sports Exerc. 2004;36(11):1871.

    Article  PubMed  Google Scholar 

  49. Ross J, et al. Adrenergic control of the force-frequency relation. Circulation. 1995;92(8):2327–32.

    Article  PubMed  Google Scholar 

  50. Linden R. The size of the heart. Cardioscience. 1994;5(4):225.

    PubMed  CAS  Google Scholar 

  51. Lauboeck H. The conditions of mitral valve closure. J Biomed Eng. 1980;2(2):93–6.

    Article  PubMed  CAS  Google Scholar 

  52. Lauboeck H. Echocardiographic study of the isovolumetric contraction time. J Biomed Eng. 1980;2(4):281–4.

    Article  PubMed  CAS  Google Scholar 

  53. Oxborough D, et al. Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise clinical perspective exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging. 2011;4(3):253–63.

    Article  PubMed  Google Scholar 

  54. Hammond HK, et al. Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol Heart Circ Physiol. 1992;263(6):H1675–81.

    CAS  Google Scholar 

  55. Stray-Gundersen J, et al. The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circ Res. 1986;58(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  56. Naylor LH, et al. The athletes heart: a contemporary appraisal of the Morganroth hypothesis. Sports Med. 2008;38(1):69–90.

    Article  PubMed  Google Scholar 

  57. Fagard RH, Unit CR. Impact of different sports and training on cardiac structure and function. Cardiol Clin. 1997;15(3):397–412.

    Article  PubMed  CAS  Google Scholar 

  58. D’Andrea A, et al. Range of right heart measurements in top-level athletes: the training impact. Int J Cardiol. 2013;164(1):48–57.

    Google Scholar 

  59. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.

    Article  PubMed  CAS  Google Scholar 

  60. Sengupta PP, et al. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1(3):366–76.

    Article  PubMed  Google Scholar 

  61. Tischler M, Niggel J. Left ventricular systolic torsion and exercise in normal hearts. J Am Soc Echocardiogr. 2003;16(6):670–4.

    Article  PubMed  Google Scholar 

  62. Notomi Y, et al. Enhanced ventricular untwisting during exercise. Circulation. 2006;113(21):2524–33.

    Article  PubMed  Google Scholar 

  63. Zocalo Y, et al. Assessment of training-dependent changes in the left ventricle torsion dynamics of professional soccer players using speckle-tracking echocardiography. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE. 2007. Lyon: IEEE.

    Google Scholar 

  64. Hyman AL. Effects of large increases in pulmonary blood flow on pulmonary venous pressure. J Appl Physiol. 1969;27(2):179–85.

    PubMed  CAS  Google Scholar 

  65. Lovering AT, et al. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol. 2009;106(6):1986–92.

    Article  PubMed  Google Scholar 

  66. Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol. 2005;288(3):L419–25.

    Article  PubMed  CAS  Google Scholar 

  67. Warren GL, et al. Red blood cell pulmonary capillary transit time during exercise in athletes. Med Sci Sports Exerc. 1991;23(12):1353.

    PubMed  CAS  Google Scholar 

  68. Kovacs G, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94.

    Article  PubMed  CAS  Google Scholar 

  69. Bossone E, et al. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33(6):1662–6.

    Article  PubMed  CAS  Google Scholar 

  70. Argiento P, et al. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35(6):1273–8.

    Article  PubMed  CAS  Google Scholar 

  71. Bidart CM, et al. The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocardiogr. 2007;20(3):270–5.

    Article  PubMed  Google Scholar 

  72. Eldridge MW, et al. Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol. 2004;97(3):797–805.

    Article  PubMed  Google Scholar 

  73. Wetter TJ, et al. Effects of exhaustive endurance exercise on pulmonary gas exchange and airway function in women. J Appl Physiol. 2001;91(2):847–58.

    PubMed  CAS  Google Scholar 

  74. Wagner PD, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61(1):260–70.

    PubMed  CAS  Google Scholar 

  75. Groves BM, et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol. 1987;63(2):521–30.

    PubMed  CAS  Google Scholar 

  76. West JB. Left ventricular filling pressures during exercise. Chest. 1998;113(6):1695–7.

    Article  PubMed  CAS  Google Scholar 

  77. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366(1):233–49.

    PubMed  CAS  Google Scholar 

  78. Rådegran G, Blomstrand E, Saltin B. Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass. J Appl Physiol. 1999;87(6):2375–80.

    PubMed  Google Scholar 

  79. Richardson RS, et al. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans. Am J Physiol Heart Circ Physiol. 1995;268(4):H1453–61.

    CAS  Google Scholar 

  80. Calbet JAL, et al. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558(1):319–31.

    Article  PubMed  CAS  Google Scholar 

  81. Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55(10):D42–7.

    Article  Google Scholar 

  82. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588.

    Article  PubMed  CAS  Google Scholar 

  83. Joyner MJ. Exercise hyperemia: waiting for the reductionists? Am J Physiol Heart Circ Physiol. 2006;291(3):H1032–3.

    Article  PubMed  CAS  Google Scholar 

  84. Neilan TG, et al. Myocardial adaptation to short-term high-intensity exercise in highly trained athletes. J Am Soc Echocardiogr. 2006;19(10):1280–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Furst, B. (2014). Cardiovascular Response During Exercise. In: The Heart and Circulation. Springer, London. https://doi.org/10.1007/978-1-4471-5277-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5277-4_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5276-7

  • Online ISBN: 978-1-4471-5277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics