Skip to main content

Function-Based Biologically Inspired Design

  • Chapter
  • First Online:
Biologically Inspired Design

Abstract

A “big picture” approach to a systematic, function-based (drawing from a Pahl and Beitz approach) biologically inspired design is presented in this chapter. The approach supports two different starting, or perhaps motivating, points: a customer need motivated product design and a biological system motivated product opportunity. Both approaches rely on a designer’s ability to create a functional model that either captures customer needs or represents the biological system of interest. This methodology relies directly on the designer’s ability to make connections between dissimilar domain information. Following presentation of the methodology are two validation approaches. One examines current biologically inspired products either in production or presented in the literature to demonstrate that the systematic design methodology for biologically inspired design can reproduce the existing design. The second validation exercise investigates three needs–based design problems that lead to plausible biologically inspired solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.designengineeringlab.org

  2. 2.

    www.asknature.org

References

  • Addlesee MD, Jones A, Livesey F, Samaria F (1997) The ORL active floor. IEEE Pers Commun 4(5):35–41

    Article  Google Scholar 

  • Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  Google Scholar 

  • Balazs M, Brown D (2002) Design simplification by analogical reasoning. In: Cugini U, Wozny M (eds) From knowledge intensive cad to knowledge intensive engineering, vol 79. Springer, US, pp 29–44

    Google Scholar 

  • Bhatta S, Goel A (1997) An analogical theory of creativity in design. In: Leake D, Plaza E (eds) Case-based reasoning research and development, vol 1266. Springer, Berlin Heidelberg, pp 565–574

    Google Scholar 

  • Biomimicry Institute (2010) Biomimicry: a tool for innovation. http://www.biomimicryinstitute.org/about-us/biomimicry-a-tool-for-innovation.html

  • Campbell NA, Reece JB (2003) Biology. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Casakin H (2006) Visual analogy as a cognitive strategy in the design process: expert versus novice performance. J Des Res 4(2), doi:10.1504/JDR.2004.009846

  • Casakin H (2006b) Assessing the use of metaphors in the design process. Environ Planning B: Planning Des 33(2):253–268

    Article  Google Scholar 

  • Casakin H (2007) Metaphors in design problem solving: implications for creativity. Int J Des 1(2):21–33

    Google Scholar 

  • Crane D (2005) New high-tech sensor-Laiden smart carpet may revolutionize building security. http://www.defensereview.com/new-high-tech-sensor-laiden-smart-carpet-may-revolutionize-building-security/

  • Dollens D (2009) BioDigital architecture uses metaphor to design living systems. http://sensingarchitecture.com/3832/biodigital-architecture-uses-metaphor-to-design-living-systems-dennis-dollens-video/

  • Dym CL, Little P (2004) Engineering design: a project-based introduction. Wiley, New York

    Google Scholar 

  • Eggins BR (2002) Chemical sensors and biosensors. Analytical techniques in the sciences. Wiley, Chichester

    Book  Google Scholar 

  • Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artificial lateral line flow sensors. J Micromech Microeng 12:655–661

    Article  Google Scholar 

  • Forty A (1989) Of Cars, Clothes and Carpets: design metaphors in architectural thought. J Des Hist 2(1):1–14. doi:10.1093/jdh/2.1.1

    Article  Google Scholar 

  • Fraden J (2004) Handbook of modern sensors : physics, designs, and applications. Springer, New York

    Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  • Gentner D (1988) Analogical inference and access, vol Analogica. Lecture notes in artificial intelligence. Morgan Kaufmann Publishers, Los Altos

    Google Scholar 

  • Gick M, Holyoak K (1980) Analogical problem-solving. Cogn Psychol 12:306–355

    Article  Google Scholar 

  • Gnatzy W, Grunert U, Bender M (1987) Campaniform sensilla of Calliphora vicina (Insecta, Diptera) I. Topography. Zoomorphology 160:312–319

    Article  Google Scholar 

  • Goel A (1997) Design, analogy and creativity. IEEE Expert Intell Syst Appl 12(3):62–70

    MathSciNet  Google Scholar 

  • Grundler P (2007) Chemical sensors an introduction for scientists and engineers. Springer, Berlin

    Google Scholar 

  • Grunert U, Gnatzy W (1987) Campaniform sensilla of Calliphora vicina (Insecta, Diptera) II. Typology. Zoomorphology 106:320–328

    Article  Google Scholar 

  • György I (2008) Conducting polymers: a new era in electrochemistry. Springer, Berlin

    Google Scholar 

  • Helms M, Vattam SS, Goel AK (2009) Biologically inspired design: products and processes. Des Stud 30(5):606–622

    Article  Google Scholar 

  • Hey J, Linsey J, Agogino AM, Wood KL (2008) Analogies and metaphors in creative design. Int J Eng Educ 24(2):283–294

    Google Scholar 

  • Hofstadter DR (1995) Fluid concepts & creative analogies: computer models of the fundamental mechanisms of thought. Basic Books, New York

    Google Scholar 

  • Hubka V, Eder EW (1984) Theory of technical systems. Springer, Berlin

    Book  Google Scholar 

  • Hyman B (1998) Engineering design. Prentice-Hall, New Jersey

    Google Scholar 

  • IEE-Institution of Electrical Engineers (2003) Research news—Walk this way for the smart floor. Electron Syst Softw 1:5–7

    Google Scholar 

  • Johnson-Laird P (1989) Analogy and the exercise of creativity. In: Vosniadou S, Ortony A (eds) Similarity and analogical reasoning. Cambridge University Press, Cambridge, pp 313–331

    Chapter  Google Scholar 

  • Liao HK, Yang ES, Chou JC, Chung WY, Sun TP, Hsiung SK (1999) Temperature and optical characteristics of tin oxide membrane gate ISFET. IEEE Trans Electron Devices 46(12):2278–2281

    Article  Google Scholar 

  • Liau WH, Wu CL, Fu LC (2008) Inhabitants tracking system in a cluttered home environment via floor load sensors. IEEE Trans Autom Sci Eng 5(1):10–20

    Article  Google Scholar 

  • Lindemann U, Gramann J (2004) Engineering design using biological principles. In: International design conference—DESIGN 2004, Dubrovnik, 2004

    Google Scholar 

  • Linsey J, Wood K, Markman A (2008) Modality and Representation in Analogy. AIEDAM 22(2):85–100

    Article  Google Scholar 

  • Mak TW, Shu LH (2004) Abstraction of biological analogies for design. CIRP Ann 531(1):117–120

    Article  Google Scholar 

  • McKean E (2005) The new Oxford American dictionary. Oxford University Press, New York

    Google Scholar 

  • Mitchell BK (2003) Chemoreception. In: Vincent HR, Ring TC (eds) Encyclopedia of insects. Academic Press, Amsterdam, pp 169–174

    Google Scholar 

  • Motamed M, Yan J (2005) A review of biological, biomimetic and miniature force sensing for microflight. In: Paper presented at the IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  • Nagai Y, Taura T (2006) Formal description of concept-synthesizing process for creative design. In: Gero JS (ed) Design Computing and Cognition’06. Springer, Dordrecht, pp 443–460

    Chapter  Google Scholar 

  • Nagel JKS, Stone RB (2012) A computational approach to biologically-inspired design. Artif Intell Eng Des, Anal Manuf, special issue DCC 2010 26(2):161–176

    Google Scholar 

  • Nagel JK (2010) Systematic design of biologically-inspired engineering solutions. Doctoral Dissertation, Oregon State University, Corvallis

    Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010) An engineering-to-biology thesaurus for engineering design. In: ASME IDETC/CIE 2010 DTM-28233, Montreal, Quebec, Canada

    Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010) Exploring the use of category and scale to scope a biological functional model. In: ASME IDETC/CIE 2010, DTM-28873, Montreal, Quebec, Canada

    Google Scholar 

  • Nagel JKS, Stone RB (2011) A systematic approach to biologically-inspired engineering design. Paper presented at the ASME IDETC/CIE 2011, DTM-47398, Washington, D.C., USA 2011

    Google Scholar 

  • Nagel RL, Tinsley A, Midha PA, McAdams DA, Stone RB, Shu L (2008) Exploring the use of functional models in biomimetic conceptual design. J Mech Des 130(12):11–23

    Article  Google Scholar 

  • Nagel JKS, Stone RB, McAdams DA (2010) Function-Based Biology Inspired Concept Generation. In: Mukherjee A (ed) Biomimetics, Learning From Nature. In-Tech, Croatia

    Google Scholar 

  • Nagel JKS, Nagel RL, Stone RB, McAdams DA (2010d) Function-based biologically-inspired concept generation. Artif Intell Eng Des Anal Manuf 24(4):521–535

    Google Scholar 

  • Orr RJ, Abowd GD (2000) The smart floor: a mechanism for natural user identification and tracking. Paper presented at the Conference on Human Factors In Computing Systems (CHI), Hague, Netherlands

    Google Scholar 

  • Otto KN, Wood KL (2001) Product design: techniques in reverse engineering and new product development. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design: a systematic approach, 3rd edn. Springer, Berlin

    Google Scholar 

  • Purves WK, Sadava D, Orians GH, Heller HC (2001) Life, the science of biology, 6th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Raven PH, Johnson GB (2002) Biology. McGraw-Hill, Boston

    Google Scholar 

  • Richardson B, Leydon K, Fernström M, Paradiso JA (2004) Z-Tiles: building blocks for modular, pressure-sensing floorspaces. Paper presented at the Conference on Human Factors In Computing Systems (CHI), Vienna, Austria

    Google Scholar 

  • Shu LH, Hansen HN, Gegeckaite A, Moon J, Chan C (2006) Case study in biomimetic design: handling and assembly of microparts. Paper presented at the ASME 2006 IDETC/CIE, Philadelphia, PA

    Google Scholar 

  • Smith GF (1998) Idea generation techniques: a formulary of active ingredients. J Creative Behav 32(2):107–133

    Article  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  Google Scholar 

  • Stone RB (1997) Towards a theory of modular design. University of Texas at Austin, Austin

    Google Scholar 

  • Stone R, Wood K (2000) Development of a functional basis for design. J Mech Des 122(4):359–370

    Article  Google Scholar 

  • Tsujimoto K, Miura S, Tsumaya A, Nagai Y, Chakrabarti A, Taura T (2008) A method for creative behavioral design based on analogy and blending from natural things. In: 2008 ASME IDETC/CIE, New York, USA, 2008. DETC2008-49389

    Google Scholar 

  • Ullman DG (2009) The mechanical design process, 4th edn. McGraw-Hill, Inc., New York

    Google Scholar 

  • Ulrich KT, Eppinger SD (2004) Product design and development. McGraw-Hill/Irwin, Boston

    Google Scholar 

  • Vattam S, Helms M, Goel A (2008) Compound analogical design: interaction between problem decomposition and analogical transfer in biologically inspired design. In: Third international conference on design computing and cognition, Atlanta, 2008. Springer, Berlin, 377–396

    Google Scholar 

  • Venere E (2010) Engineers design, build major component for hydrogen cars. http://www.physorg.com/news186221598.html

  • Vincent JFV, Mann DL (2002) Systematic technology transfer from biology to engineering. Philos Trans Royal Soc Lond A 360:159–173

    Article  Google Scholar 

  • Voland G (2004) Engineering by design, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Vorwerk & Co. TGCK (2004) Infineon thinking carpet. http://www.vorwerk-carpet.com/sc/vorwerk/bildmeldung_thinkCarpet_en.html

  • Wicaksono DHB, Pandraud G, Craciun G, Vincent JFV, French PJ (2004) Fabrication and initial characterisation results of a micromachined biomimetic strain sensor inspired from the campaniform sensillum of insects. In: IEEE Sensors 2004, 542–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquelyn K. S. Nagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nagel, J.K.S., Stone, R.B., McAdams, D.A. (2014). Function-Based Biologically Inspired Design. In: Goel, A., McAdams, D., Stone, R. (eds) Biologically Inspired Design. Springer, London. https://doi.org/10.1007/978-1-4471-5248-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5248-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5247-7

  • Online ISBN: 978-1-4471-5248-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics