Skip to main content

Surgical Treatment of Arrhythmias and Conduction Disorders

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Repair of congenital heart disease can lead to adverse outcomes that include arrhythmias and heart failure. Arrhythmias involve notable morbidity, including hospitalizations, development of heart failure, stroke, and decreased quality of life. In the last 5 years, several professional societies have updated guidelines in an effort to standardize evaluation and management of arrhythmias, including for congenital heart disease. Knowledge of these recommendations and the mechanisms of arrhythmias are essential for training programs for surgeons and cardiologists to optimize care for patients with congenital heart disease. Surgical therapy of atrial arrhythmias at the time of reoperations for congenital heart disease involves a unique opportunity to intervene for treatment of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Diller GP, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Li W et al (2015) Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 132(22):2118–2125

    Article  PubMed  Google Scholar 

  2. Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI et al (2014) PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the pediatric and congenital electrophysiology society (PACES) and the heart rhythm society (HRS). Endorsed by the governing bodies of PACES, HRS, the American college of cardiology (ACC), the American heart association (AHA), the European heart rhythm association (EHRA), the Canadian heart rhythm Society (chrs), and the international Society for adult congenital heart disease (isachd). Heart Rhythm 11(10):e102–e165

    Article  PubMed  Google Scholar 

  3. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the heart rhythm society. J Am Coll Cardiol 64(21):e1–e76

    Article  PubMed  Google Scholar 

  4. Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ et al (2016) 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart rhythm society. Circulation 133(14):e506–e574

    PubMed  Google Scholar 

  5. Badhwar V, Rankin JS, Damiano RJ Jr, Gillinov AM, Bakaeen FG, Edgerton JR et al (2017) The society of thoracic surgons 2017 clinical practice guidelines for the surgical treatment of atrial fibrillation. Ann Thorac Surg 103(1):329–341

    Google Scholar 

  6. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Circulation 138:e272–e391

    Google Scholar 

  7. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NA 3rd et al (2012) 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the heart rhythm society. [corrected]. Circulation 126(14):1784–1800

    Article  PubMed  Google Scholar 

  8. Bouchardy J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Bottega N et al (2009) Atrial arrhythmias in adults with congenital heart disease. Circulation 120(17):1679–1686

    Article  PubMed  Google Scholar 

  9. Wu MH, Lu CW, Chen HC, Kao FY, Huang SK (2018) Adult congenital heart disease in a nationwide population 2000–2014: epidemiological trends, arrhythmia, and standardized mortality ratio. J Am Heart Assoc 7(4):e007907

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trojnarska O, Grajek S, Kramer L, Gwizdala A (2009) Risk factors of supraventricular arrhythmia in adults with congenital heart disease. Cardiol J 16(3):218–226

    PubMed  Google Scholar 

  11. Yap SC, Harris L, Chauhan VS, Oechslin EN, Silversides CK (2011) Identifying high risk in adults with congenital heart disease and atrial arrhythmias. Am J Cardiol 108(5):723–728

    Article  PubMed  Google Scholar 

  12. Murphy JG, Gersh BJ, McGoon MD, Mair DD, Porter CJ, Ilstrup DM, et al (1990) Long-term outcome after surgical repair of isolated atrial septal defect. Follow-up at 27 to 32 years. N Engl J Med. 323(24):1645–50

    Google Scholar 

  13. Gatzoulis MA, Freeman MA, Siu SC, Webb GD, Harris L (1999) Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med. 340(11):839–46

    Google Scholar 

  14. Engelfriet P, Boersma E, Oechslin E, Tijssen J, Gatzoulis MA, Thilen U, et al (2005) The spectrum of adult congenital heart disease in europe: Morbidity and mortality in a 5 year follow-up period. The euro heart survey on adult congenital heart disease. Eur Heart J. 26(21):2325–33

    Google Scholar 

  15. Verheugt CL, Uiterwaal CS, Grobbee DE, Mulder BJ (2008) Long-term prognosis of congenital heart defects: A systematic review. Int J Cardiol. 131(1):25–32

    Google Scholar 

  16. Cuypers JA, Opic P, Menting ME, Utens EM, Witsenburg M, Helbing WA, et al (2013) The unnatural history of an atrial septal defect: Longitudinal 35 year follow up after surgical closure at young age. Heart. 99(18):1346–52

    Google Scholar 

  17. Nyboe C, Olsen MS, Nielsen-Kudsk JE, Hjortdal VE (2015) Atrial fibrillation and stroke in adult patients with atrial septal defect and the long-term effect of closure. Heart. 101(9):706–11

    Google Scholar 

  18. Karunanithi Z, Nyboe C, Hjortdal VE (2017) Long-term risk of atrial fibrillation and stroke in patients with atrial septal defect diagnosed in childhood. Am J Cardiol. 119(3):461–5

    Google Scholar 

  19. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, et al (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: A multicentre study. The Lancet. 356(9234):975–81

    Google Scholar 

  20. Harrison DA, Siu SC, Hussain F, MacLoghlin CJ, Webb GD, Harris L (2001) Sustained atrial arrhythmias in adults late after repair of tetralogy of fallot. Am J Cardiol. 87(5):584–8

    Google Scholar 

  21. Cuypers JA, Menting ME, Konings EE, Opic P, Utens EM, Helbing WA, et al (2014) Unnatural history of tetralogy of Fallot: Prospective follow-up of 40 years after surgical correction. Circulation. 130(22):1944–53

    Google Scholar 

  22. Cotts T, Khairy P, Opotowsky AR, John AS, Valente AM, Zaidi AN, et al (2014) Clinical research priorities in adult congenital heart disease. Int J Cardiol. 171(3):351–60

    Google Scholar 

  23. Wu MH, Lu CW, Chen HC, Chiu SN, Kao FY, Huang SK (2015) Arrhythmic burdens in patients with tetralogy of Fallot: A national database study. Heart Rhythm. 12(3):604–9

    Google Scholar 

  24. Celermajer DS, Bull C, Till JA, Cullen S, Vassillikos VP, Sullivan ID, et al (1994) Ebstein’s anomaly: Presentation and outcome from fetus to adult. J Am Coll Cardiol. 23(1):170–6

    Google Scholar 

  25. Delhaas T, Sarvaas GJ, Rijlaarsdam ME, Strengers JL, Eveleigh RM, Poulino SE, et al (2010) A multicenter, long-term study on arrhythmias in children with ebstein anomaly. Pediatr Cardiol. 31(2):229–33

    Google Scholar 

  26. Luu Q, Choudhary P, Jackson D, Canniffe C, McGuire M, Chard R, et al (2015) Ebstein’s anomaly in those surviving to adult life - a single centre experience. Heart Lung Circ. 24(10):996–1001

    Google Scholar 

  27. Song MK, Bae EJ, Kwon BS, Kim GB, Noh CI, Choi JY, et al (2015) Intra-atrial reentrant tachycardia in adult patients after Fontan operation. Int J Cardiol. 187:157–63

    Google Scholar 

  28. Stephenson EA, Lu M, Berul CI, Etheridge SP, Idriss SF, Margossian R, et al (2010) Arrhythmias in a contemporary fontan cohort: Prevalence and clinical associations in a multicenter cross-sectional study. J Am Coll Cardiol. 56(11):890–6

    Google Scholar 

  29. Ghai A, Harris L, Harrison DA, Webb GD, Siu SC (2001) Outcomes of late atrial tachyarrhythmias in adults after the Fontan operation. J Am Coll Cardiol. 37(2):585–92

    Google Scholar 

  30. Idorn L, Juul K, Jensen AS, Hanel B, Nielsen KG, Andersen H, et al. (2013) Arrhythmia and exercise intolerance in Fontan patients: Current status and future burden. Int J Cardiol. 168(2):1458–65

    Google Scholar 

  31. Balaji S, Daga A, Bradley DJ, Etheridge SP, Law IH, Batra AS, et al (2014) An international multicenter study comparing arrhythmia prevalence between the intracardiac lateral tunnel and the extracardiac conduit type of Fontan operations. J Thorac Cardiovasc Surg. 148(2):576–81

    Google Scholar 

  32. Quinton E, Nightingale P, Hudsmith L, Thorne S, Marshall H, Clift P, et al (2015) Prevalence of atrial tachyarrhythmia in adults after Fontan operation. Heart. 101(20):1672–7

    Google Scholar 

  33. Puley G, Siu S, Connelly M, Harrison D, Webb G, Williams WG, et al (1999) Arrhythmia and survival in patients >18 years of age after the mustard procedure for complete transposition of the great arteries. Am J Cardiol. 83(7):1080–4

    Google Scholar 

  34. Hayashi G, Kurosaki K, Echigo S, Kado H, Fukushima N, Yokota M, et al (2006) Prevalence of arrhythmias and their risk factors mid- and long-term after the arterial switch operation. Pediatr Cardiol. 27(6):689–94

    Google Scholar 

  35. Gatzoulis MA, Walters J, McLaughlin PR, Merchant N, Webb GD, Liu P (2000) Late arrhythmia in adults with the mustard procedure for transposition of great arteries: A surrogate marker for right ventricular dysfunction? Heart. 84(4):409–15

    Google Scholar 

  36. Moons P GM, Sluysmans T, Verhaaren H, Viart P, Massin M, Suys B, Budts W, Pasquet A, De Wolf D, Vliers A. (2004) Long term outcome up to 30 years after the mustard or senning operation: A nationwide multicentre study in belgium. Heart. 90(3):307–13

    Google Scholar 

  37. Hutter PA, Kreb DL, Mantel SF, Hitchcock JF, Meijboom EJ (2002) Bennink GBWE. Twenty-five years’ experience with the arterial switch operation. The Journal of Thoracic and Cardiovascular Surgery. 124(4):790–7

    Google Scholar 

  38. Graham TP, Jr., Bernard YD, Mellen BG, Celermajer D, Baumgartner H, Cetta F, et al (2000) Long-term outcome in congenitally corrected transposition of the great arteries: A multi-institutional study. J Am Coll Cardiol. 36(1):255–61

    Google Scholar 

  39. Deal BJ, Tsao S (2021) Surgery for arrhythmia management in congenital heart disease: The electrophysiologist’s perspective. In Walsh EP, van Hare GF, Khairy P, Shenasa M (eds): Catheter Ablation of Cardiac Arrhythmias in Children and Patients with Congenital Heart Disease. CRC Press

    Google Scholar 

  40. Deal BJ, Mavroudis C (2023) Surgical and transcatheter management of arrhythmias. In Mavroudis C, Backer CL (eds): Pediatric Cardiac Surgery, 5th ed. UK: John Wiley & Sons

    Google Scholar 

  41. Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, Sieswerda GT et al (2010) The emerging burden of hospital admissions of adults with congenital heart disease. Heart 96(11):872–878

    Google Scholar 

  42. Loomba RS, Buelow MW, Aggarwal S, Arora RR, Kovach J, Ginde S (2017) Arrhythmias in adults with congenital heart disease: what are risk factors for specific arrhythmias? Pacing Clin Electrophysiol 40(4):353–361

    Google Scholar 

  43. Opotowsky AR, Siddiqi OK, Webb GD (2009) Trends in hospitalizations for adults with congenital heart disease in the U.S. J Am Coll Cardiol 54(5):460–467

    Google Scholar 

  44. Gallagher JJ, Gilbert M, Svenson RH, Sealy WC, Kasell J, Wallace AG, Wolff-Parkinson-White syndrome. (1975) The problem, evaluation, and surgical correction. Circulation 51(5):767–785

    Google Scholar 

  45. Guiraudon GM, Klein GJ, Sharma AD, Yee R (1989) Surgical alternatives for supraventricular tachycardias. Am J Cardiol 64(20):92j–96j

    Google Scholar 

  46. Cox JL (1991) The surgical treatment of atrial fibrillation. Iv Surgical technique. J Thorac Cardiovasc Surg 101(4):584–592

    Google Scholar 

  47. Mavroudis CBC, Deal BJ, Johnsrude CL (1998) Fontan conversion to cavopulmonary connection and arrhythmia circuit cryoablation. J Thorac Cardiovasc Surg 115:547–556

    Article  CAS  PubMed  Google Scholar 

  48. Ashburn DA, Harris L, Downar EH, Siu S, Webb GD, Williams WG (2003) Electrophysiologic surgery in patients with congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:51–58

    Google Scholar 

  49. Dearani JA, Mavroudis C, Quintessenza J, Deal BJ, Backer CL, Fitzgerald P et al (2009) Surgical advances in the treatment of adults with congenital heart disease. Curr Opin Pediatr 21(5):565–572

    Google Scholar 

  50. Deal BJ, Mavroudis C, Backer CL (2003) Beyond Fontan conversion: surgical therapy of arrhythmias including patients with associated complex congenital heart disease. Ann Thorac Surg 76(2):542–554

    Google Scholar 

  51. Giamberti A, Chessa M, Abella R, Butera G, Negura D, Foresti S et al (2008) Surgical treatment of arrhythmias in adults with congenital heart defects. Int J Cardiol 129(1):37–41

    Google Scholar 

  52. Morady F, Scheinman MM (1984) Transvenous catheter ablation of a posteroseptal accessory pathway in a patient with the Wolff-Parkinson-White syndrome. N Engl J Med 310(11):705–707

    Google Scholar 

  53. Jackman WM, Wang XZ, Friday KJ, Roman CA, Moulton KP, Beckman KJ et al (1991) Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med 324(23):1605–1611

    Google Scholar 

  54. Haissaguerre M, Hocini M, Sanders P, Sacher F, Rotter M, Takahashi Y et al (2005) Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias. J Cardiovasc Electrophysiol 16(11):1138–1147

    Google Scholar 

  55. Nakagawa H, Jackman WM (2007) Catheter ablation of paroxysmal supraventricular tachycardia. Circulation 116(21):2465–2478

    Google Scholar 

  56. Stulak JM, Dearani JA, Puga FJ, Zehr KJ, Schaff HV, Danielson GK (2006) Right-sided maze procedure for atrial tachyarrhythmias in congenital heart disease. Ann Thorac Surg 81(5):1780–1784; discussion 4–5

    Google Scholar 

  57. McCarthy PM, Manjunath A, Kruse J, Andrei AC, Li Z, McGee EC Jr et al (2013) Should paroxysmal atrial fibrillation be treated during cardiac surgery? J Thorac Cardiovasc Surg 146(4):810–823

    Google Scholar 

  58. Ad N, Holmes SD, Massimiano PS, Pritchard G, Stone LE, Henry L (2013) The effect of the cox-maze procedure for atrial fibrillation concomitant to mitral and tricuspid valve surgery. J Thorac Cardiovasc Surg 146(6):1426–1434; discussion 34–35

    Google Scholar 

  59. Backer CL, Tsao S, Deal BJ, Mavroudis C (2008) Maze procedure in single ventricle patients. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 44–48

    Google Scholar 

  60. Cox JL, Gallagher JJ, Ungerleider RM (1982) Encircling endocardial ventriculotomy for refractory ischemic ventricular tachycardia. Iv. Clinical indication, surgical technique, mechanism of action, and results. J Thorac Cardiovasc Surg 83(6):865–872

    Google Scholar 

  61. Josephson ME, Harken AH, Horowitz LN (1979) Endocardial excision: a new surgical technique for the treatment of recurrent ventricular tachycardia. Circulation 60(7):1430–1439

    Article  CAS  PubMed  Google Scholar 

  62. Harrild DM, Berul CI, Cecchin F, Geva T, Gauvreau K, Pigula F et al (2009) Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation 119(3):445–451

    Google Scholar 

  63. Ott DA, Gillette PC, Garson A Jr, Cooley DA, Reul GJ, McNamara DG (1985) Surgical management of refractory supraventricular tachycardia in infants and children. J Am Coll Cardiol 5(1):124–129

    Article  CAS  PubMed  Google Scholar 

  64. Bockeria LA, Mikhailin SI (1990) The results of surgery for tachyarrhythmias in children. Pacing Clin Electrophysiol 13(12 Pt 2):1990–1995

    Google Scholar 

  65. Crawford FA Jr, Gillette PC (1994) Surgical treatment of cardiac dysrhythmias in infants and children. Ann Thorac Surg 58(4):1262–1268

    Google Scholar 

  66. Greason KL, Dearani JA, Theodoro DA, Porter CB, Warnes CA, Danielson GK (2003) Surgical management of atrial tachyarrhythmias associated with congenital cardiac anomalies: mayo clinic experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:59–71

    Google Scholar 

  67. Karamlou T, Silber I, Lao R, McCrindle BW, Harris L, Downar E et al (2006) Outcomes after late reoperation in patients with repaired tetralogy of Fallot: the impact of arrhythmia and arrhythmia surgery. Ann Thorac Surg 81(5):1786–1793; discussion 93

    Google Scholar 

  68. Mavroudis C, Deal BJ, Backer CL, Stewart RD, Franklin WH, Tsao S et al (2007) J. Maxwell chamberlain memorial paper for congenital heart surgery. 111 Fontan conversions with arrhythmia surgery: surgical lessons and outcomes. Ann Thorac Surg 84(5):1457–1465; discussion 65–66

    Google Scholar 

  69. Mavroudis C, Deal BJ, Backer CL, Tsao S (2008) Arrhythmia surgery in patients with and without congenital heart disease. Ann Thorac Surg 86(3):857–868; discussion -68

    Google Scholar 

  70. Gutierrez SD, Earing MG, Singh AK, Tweddell JS, Bartz PJ (2013) Atrial tachyarrhythmias and the cox-maze procedure in congenital heart disease. Congenit Heart Dis 8(5):434–439

    Google Scholar 

  71. Said SM, Burkhart HM, Schaff HV, Cetta F, Driscoll DJ, Li Z et al (2014) Fontan conversion: identifying the high-risk patient. Ann Thorac Surg 97(6):2115–2121; discussion 21–22

    Google Scholar 

  72. Stulak JM, Sharma V, Cannon BC, Ammash N, Schaff HV, Dearani JA (2015) Optimal surgical ablation of atrial tachyarrhythmias during correction of Ebstein anomaly. Ann Thorac Surg 99(5):1700–1705; discussion 5

    Google Scholar 

  73. Holst KA, Said SM, Nelson TJ, Cannon BC, Dearani JA (2017) Current interventional and surgical management of congenital heart disease: specific focus on valvular disease and cardiac arrhythmias. Circ Res 120(6):1027–1044

    Google Scholar 

  74. Mavroudis C, Backer CL, Deal BJ, Stewart RD, Franklin WH, Tsao S, et al (2007) Evolving anatomic and electrophysiologic considerations associated with Fontan conversion. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 136–145

    Google Scholar 

  75. Mavroudis C, Deal B, Backer CL, Stewart RD (2013) Operative techniques in association with arrhythmia surgery in patients with congenital heart disease. World J Pediatr Congenit Heart Surg 4(1):85–97

    Google Scholar 

  76. Deal BJ, Mavroudis C (2017) Arrhythmia surgery for adults with congenital heart disease. Card Electrophysiol Clin 9(2):329–340

    Google Scholar 

  77. Sanchez-Quintana D, Doblado-Calatrava M, Cabrera JA, Macias Y, Saremi F (2015) Anatomical basis for the cardiac interventional electrophysiologist. Biomed Res Int 2015:547364

    Google Scholar 

  78. van Campenhout MJ, Yaksh A, Kik C, de Jaegere PP, Ho SY, Allessie MA et al (2013) Bachmann’s bundle: a key player in the development of atrial fibrillation? Circ Arrhythm Electrophysiol 6(5):1041–1046

    Google Scholar 

  79. Sanchez-Quintana D, Pizarro G, Lopez-Minguez JR, Ho SY, Cabrera JA (2013) Standardized review of atrial anatomy for cardiac electrophysiologists. J Cardiovasc Transl Res 6(2):124–144

    Google Scholar 

  80. Mavroudis C, Stulak JM, Ad N, Siegel A, Giamberti A, Harris L et al (2015) Prophylactic atrial arrhythmia surgical procedures with congenital heart operations: review and recommendations. Ann Thorac Surg 99(1):352–359

    Google Scholar 

  81. Hosseinpour AR, Adsuar-Gomez A, Gonzalez-Calle A, Pedrote A, Arana-Rueda E, Garcia-Riesco L et al (2016) A simple surgical technique to prevent atrial reentrant tachycardia in surgery for congenital heart disease dagger. Interact Cardiovasc Thorac Surg 22(1):47–52

    Article  PubMed  Google Scholar 

  82. Chan DP, Van Hare GF, Mackall JA, Carlson MMD, Waldo AL (2000) Importance of atrial flutter isthmus in postoperative intra-atrial reentrant tachycardia. Circulation 102(11):1283–1289

    Article  CAS  PubMed  Google Scholar 

  83. Collins KK, Love BA, Walsh EP, Saul JP, Epstein MR, Triedman JK (2000) Location of acutely successful radiofrequency catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease. Am J Cardiol 86(9):969–974

    Article  CAS  PubMed  Google Scholar 

  84. Cosio FG, Arribas F, Lopez-Gil M, Gonzalez HD (1996) Atrial flutter mapping and ablation ii. Radiofrequency ablation of atrial flutter circuits. Pacing Clin Electrophysiol 19(6):965–975

    Article  CAS  PubMed  Google Scholar 

  85. Cosio FG, Pastor A, Nunez A, Montero MA (2000) How to map and ablate atrial scar macroreentrant tachycardia of the right atrium. Europace 2(3):193–200

    Article  CAS  PubMed  Google Scholar 

  86. Zeppenfeld K, Schalij MJ, Bartelings MM, Tedrow UB, Koplan BA, Soejima K et al (2007) Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation 116(20):2241–2252

    Article  CAS  PubMed  Google Scholar 

  87. Harrison DA HL, Siu SC, MacLoghlin CJ, Connelly MS, Webb GD, Downar E, McLaughlin PR, Williams WG (1997) Sustained ventricular tachycadia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol 30:1368–1373

    Article  PubMed  Google Scholar 

  88. Oechslin EN, Harrison DA, Harris L, Downar E, Webb GD, Siu SS et al (1999) Reoperation in adults with repair of tetralogy of fallot: indications and outcomes. J Thorac Cardiovasc Surg 118(2):245–251

    Article  CAS  PubMed  Google Scholar 

  89. Therrien J, Siu SC, Harris L, Dore A, Niwa K, Janousek J et al (2001) Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation 103(20):2489–2494

    Article  CAS  PubMed  Google Scholar 

  90. Sandhu A, Ruckdeschel E, Sauer WH, Collins KK, Kay JD, Khanna A et al (2018) Perioperative electrophysiology study in patients with tetralogy of Fallot undergoing pulmonary valve replacement will identify those at high risk of subsequent ventricular tachycardia. Heart Rhythm 15(5):679–685

    Article  PubMed  Google Scholar 

  91. Schwartz PJ, Locati EH, Moss AJ, Crampton RS, Trazzi R, Ruberti U (1991) Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome. A worldwide report. Circulation 84(2):503–511

    Article  CAS  PubMed  Google Scholar 

  92. Collura CA, Johnson JN, Moir C, Ackerman MJ (2009) Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm 6(6):752–759

    Article  PubMed  Google Scholar 

  93. Costello JP, Wilson JK, Louis C, Peer SM, Zurakowski D, Nadler EP et al (2015) Surgical cardiac denervation therapy for treatment of congenital ion channelopathies in pediatric patients: a contemporary, single institutional experience. World J Pediatr Congenit Heart Surg 6(1):33–38

    Article  PubMed  Google Scholar 

  94. Hong JC, Crawford T, Tandri H, Mandal K (2017) What is the role of cardiac sympathetic denervation for recurrent ventricular tachycardia? Curr Treat Options Cardiovasc Med 19(2):11

    Article  PubMed  Google Scholar 

  95. Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP et al (2015) Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol 8(3):633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI et al (2015) Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation 131(25):2185–2193

    Article  PubMed  Google Scholar 

  97. Schneider HE, Steinmetz M, Krause U, Kriebel T, Ruschewski W, Paul T (2013) Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. Clin Res Cardiol 102(1):33–42

    Article  PubMed  Google Scholar 

  98. Olde Nordkamp LR, Driessen AH, Odero A, Blom NA, Koolbergen DR, Schwartz PJ et al (2014) Left cardiac sympathetic denervation in The Netherlands for the treatment of inherited arrhythmia syndromes. Neth Heart J 22(4):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hofferberth SC, Cecchin F, Loberman D, Fynn-Thompson F (2014) Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J Thorac Cardiovasc Surg 147(1):404–409

    Article  PubMed  Google Scholar 

  100. Bos JM, Bos KM, Johnson JN, Moir C, Ackerman MJ (2013) Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ Arrhythm Electrophysiol 6(4):705–711

    Article  PubMed  Google Scholar 

  101. Waddell-Smith KE, Ertresvaag KN, Li J, Chaudhuri K, Crawford JR, Hamill JK et al (2015) Physical and psychological consequences of left cardiac sympathetic denervation in long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 8(5):1151–1158

    Article  CAS  PubMed  Google Scholar 

  102. Webster G, Monge MC (2015) Left cardiac sympathetic denervation: should we sweat the side effects? Circ Arrhythm Electrophysiol 8(5):1007–1009

    Article  PubMed  Google Scholar 

  103. Moss AJ, McDonald J (1971) Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med 285(16):903–904

    Article  CAS  PubMed  Google Scholar 

  104. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C et al (2004) Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109(15):1826–1833

    Article  PubMed  Google Scholar 

  105. Schwartz PJ (1978) Unilateral stellectomy and dysrhythmias. Circ Res 43(6):939–940

    Article  CAS  PubMed  Google Scholar 

  106. McNamara C, Cullen P, Rackauskas M, Kelly R, O’Sullivan KE, Galvin J et al (2017) Left cardiac sympathetic denervation: case series and technical report. Ir J Med Sci 186(3):607–613

    Article  CAS  PubMed  Google Scholar 

  107. Li J, Liu Y, Yang F, Jiang G, Li C, Hu D et al (2008) Video-assisted thoracoscopic left cardiac sympathetic denervation: a reliable minimally invasive approach for congenital long-QT syndrome. Ann Thorac Surg 86(6):1955–1958

    Article  PubMed  Google Scholar 

  108. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2013) 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American college of cardiology foundation/American heart association task force on practice guidelines and the heart rhythm society. J Am Coll Cardiol 61(3):e6–e75

    Article  PubMed  Google Scholar 

  109. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to revise the ACC/AHA/naspe 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices): developed in collaboration with the American association for thoracic surgery and society of thoracic surgeons. Circulation 117(21):e350–e408

    PubMed  Google Scholar 

  110. Janousek J, Kubus P (2014) What’s new in cardiac pacing in children? Curr Opin Cardiol 29(1):76–82

    Article  PubMed  Google Scholar 

  111. Kramer CC, Maldonado J, Olson M, Gingerich JC, Ochoa L, Law IH (2017) Safety and efficacy of atrial antitachycardia pacing in congenital heart disease. Heart Rhythm 15(4):543–547

    Article  PubMed  Google Scholar 

  112. Santharam S, Hudsmith L, Thorne S, Clift P, Marshall H, De Bono J (2017) Long-term follow-up of implantable cardioverter-defibrillators in adult congenital heart disease patients: indications and outcomes. Europace 19(3):407–413

    PubMed  Google Scholar 

  113. Janousek J, Kubus P (2016) Cardiac resynchronization therapy in congenital heart disease. Herzschrittmacherther Elektrophysiol 27(2):104–109

    Article  PubMed  Google Scholar 

  114. Koyak Z, de Groot JR, Krimly A, Mackay TM, Bouma BJ, Silversides CK et al (2018) Cardiac resynchronization therapy in adults with congenital heart disease. Europace 20(2):315–322

    Article  PubMed  Google Scholar 

  115. Janousek J, Gebauer RA, Abdul-Khaliq H, Turner M, Kornyei L, Grollmuss O et al (2009) Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates. Heart 95(14):1165–1171

    Article  CAS  PubMed  Google Scholar 

  116. Chubb H, O’Neill M, Rosenthal E (2016) Pacing and defibrillators in complex congenital heart disease. Arrhythm Electrophysiol Rev 5(1):57–64

    Article  PubMed  PubMed Central  Google Scholar 

  117. Villain E (2008) Indications for pacing in patients with congenital heart disease. Pacing Clin Electrophysiol 31(Suppl 1):S17–S20

    Article  PubMed  Google Scholar 

  118. Welisch E, Cherlet E, Crespo-Martinez E, Hansky B (2010) A single institution experience with pacemaker implantation in a pediatric population over 25 years. Pacing Clin Electrophysiol 33(9):1112–1118

    Article  PubMed  Google Scholar 

  119. Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E et al (2016) Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management. Eur J Pediatr 175(9):1235–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McLeod KA (2010) Cardiac pacing in infants and children. Heart 96(18):1502–1508

    Article  PubMed  Google Scholar 

  121. Eliasson H, Sonesson SE, Salomonsson S, Skog A, Wahren-Herlenius M, Gadler F (2015) Outcome in young patients with isolated complete atrioventricular block and permanent pacemaker treatment: a nationwide study of 127 patients. Heart Rhythm 12(11):2278–2284

    Article  PubMed  Google Scholar 

  122. Anderson JB, Czosek RJ, Knilans TK, Meganathan K, Heaton P (2012) Postoperative heart block in children with common forms of congenital heart disease: results from the kid database. J Cardiovasc Electrophysiol 23(12):1349–1354

    Article  PubMed  Google Scholar 

  123. Wilhelm BJ, Thone M, El-Scheich T, Livert D, Angelico R, Osswald B (2015) Complications and risk assessment of 25 years in pediatric pacing. Ann Thorac Surg 100(1):147–153

    Article  PubMed  Google Scholar 

  124. Singh HR, Batra AS, Balaji S (2013) Pacing in children. Ann Pediatr Cardiol 6(1):46–51

    Article  PubMed  PubMed Central  Google Scholar 

  125. Konta L, Chubb MH, Bostock J, Rogers J, Rosenthal E (2016) Twenty-seven years experience with transvenous pacemaker implantation in children weighing <10 kg. Circ Arrhythm Electrophysiol 9(2):e003422

    Article  CAS  PubMed  Google Scholar 

  126. Vos LM, Kammeraad JAE, Freund MW, Blank AC, Breur J (2017) Long-term outcome of transvenous pacemaker implantation in infants: a retrospective cohort study. Europace 19(4):581–587

    PubMed  Google Scholar 

  127. Chaouki AS, Spar DS, Khoury PR, Anderson JB, Knilans TK, Morales DL et al (2017) Risk factors for complications in the implantation of epicardial pacemakers in neonates and infants. Heart Rhythm 14(2):206–210

    Article  PubMed  Google Scholar 

  128. Kubus P, Materna O, Gebauer RA, Matejka T, Gebauer R, Tlaskal T et al (2012) Permanent epicardial pacing in children: long-term results and factors modifying outcome. Europace 14(4):509–514

    Article  PubMed  Google Scholar 

  129. Lau KC, William Gaynor J, Fuller SM, Karen AS, Shah MJ (2015) Long-term atrial and ventricular epicardial pacemaker lead survival after cardiac operations in pediatric patients with congenital heart disease. Heart Rhythm 12(3):566–573

    Article  PubMed  Google Scholar 

  130. Fortescue EB, Berul CI, Cecchin F, Walsh EP, Triedman JK, Alexander ME (2004) Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm 1(2):150–159

    Article  PubMed  Google Scholar 

  131. Karpawich PP (2008) Technical aspects of pacing in adult and pediatric congenital heart disease. Pacing Clin Electrophysiol 31(Suppl 1):S28–S31

    Article  PubMed  Google Scholar 

  132. Horovitz A, De Guillebon M, van Geldorp IE, Bordachar P, Roubertie F, Iriart X et al (2012) Effects of nonsystemic ventricular pacing in patients with transposition of the great arteries and atrial redirection. J Cardiovasc Electrophysiol 23(7):766–770

    Article  PubMed  Google Scholar 

  133. Sadagopan SN, Veldtman GR, Roberts PR (2008) Extraction of chronic pacing lead and angioplasty for complete superior baffle obstruction in complex congenital heart disease. Pacing Clin Electrophysiol 31(12):1661–1663

    Article  PubMed  Google Scholar 

  134. Rosenthal E, Konta L (2014) Transvenous atrial pacing from the superior vena cava stump after the hemi-Fontan operation – a new approach. Pacing Clin Electrophysiol 37(5):531–536

    Article  PubMed  Google Scholar 

  135. Egbe AC, Huntley GD, Connolly HM, Ammash NM, Deshmukh AJ, Khan AR et al (2017) Outcomes of cardiac pacing in adult patients after a Fontan operation. Am Heart J 194:92–98

    Article  PubMed  Google Scholar 

  136. Khairy P, Landzberg MJ, Gatzoulis MA, Mercier LA, Fernandes SM, Cote JM et al (2006) Transvenous pacing leads and systemic thromboemboli in patients with intracardiac shunts: a multicenter study. Circulation 113(20):2391–2397

    Article  PubMed  Google Scholar 

  137. Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J et al (2014) Permanent leadless cardiac pacing: results of the leadless trial. Circulation 129(14):1466–1471

    Article  PubMed  Google Scholar 

  138. Reddy VY, Exner DV, Cantillon DJ, Doshi R, Bunch TJ, Tomassoni GF et al (2015) Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med 373(12):1125–1135

    Article  CAS  PubMed  Google Scholar 

  139. Boveda S, Lenarczyk R, Haugaa KH, Iliodromitis K, Finlay M, Lane D et al (2018) Use of leadless pacemakers in Europe: results of the European heart rhythm association survey. Europace 20(3):555–559

    Article  PubMed  Google Scholar 

  140. van Geldorp IE, Delhaas T, Gebauer RA, Frias P, Tomaske M, Friedberg MK et al (2011) Impact of the permanent ventricular pacing site on left ventricular function in children: a retrospective multicentre survey. Heart 97(24):2051–2055

    Article  PubMed  Google Scholar 

  141. Janousek J (2014) Device therapy in children with and without congenital heart disease. Herzschrittmacherther Elektrophysiol 25(3):183–187

    Article  PubMed  Google Scholar 

  142. Silvetti MS, Ammirati A, Palmieri R, Pazzano V, Placidi S, Rava L et al (2017) What endocardial right ventricular pacing site shows better contractility and synchrony in children and adolescents? Pacing Clin Electrophysiol 40(9):995–1003

    Article  PubMed  Google Scholar 

  143. Plymen CM, Finlay M, Tsang V, O’Leary J, Picaut N, Cullen S et al (2015) Haemodynamic consequences of targeted single- and dual-site right ventricular pacing in adults with congenital heart disease undergoing surgical pulmonary valve replacement. Europace 17(2):274–280

    Article  PubMed  Google Scholar 

  144. Karpawich PP, Singh H, Zelin K (2015) Optimizing paced ventricular function in patients with and without repaired congenital heart disease by contractility-guided lead implant. Pacing Clin Electrophysiol 38(1):54–62

    Article  PubMed  Google Scholar 

  145. Karpawich PP (2015) Improving pacemaker therapy in congenital heart disease: contractility and resynchronization. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 18(1):51–56

    Article  PubMed  Google Scholar 

  146. Sandrio S, Purbojo A, Toka O, Dittrich S, Cesnjevar R, Ruffer A (2016) Transmural placement of endocardial pacing leads in patients with congenital heart disease. Ann Thorac Surg 101(6):2335–2340

    Article  PubMed  Google Scholar 

  147. Williams MR, Shepard SM, Boramanand NK, Lamberti JJ, Perry JC (2014) Long-term follow-up shows excellent transmural atrial lead performance in patients with complex congenital heart disease. Circ Arrhythm Electrophysiol 7(4):652–657

    Article  PubMed  Google Scholar 

  148. Haight PJ, Stewart RE, Saarel EV, Pettersson GB, Najm HK, Aziz PF (2018) Lateral thoracotomy for epicardial pacemaker placement in patients with congenital heart disease. Interact Cardiovasc Thorac Surg 26(5):845–851

    Article  PubMed  Google Scholar 

  149. Bulic A, Zimmerman FJ, Ceresnak SR, Shetty I, Motonaga KS, Freter A et al (2017) Ventricular pacing in single ventricles-a bad combination. Heart Rhythm 14(6):853–857

    Article  PubMed  Google Scholar 

  150. Tsao S, Deal BJ, Backer CL, Ward K, Franklin WH, Mavroudis C (2009) Device management of arrhythmias after Fontan conversion. J Thorac Cardiovasc Surg 138(4):937–940

    Article  PubMed  Google Scholar 

  151. Kamp AN, LaPage MJ, Serwer GA, Dick M 2nd, Bradley DJ (2015) Antitachycardia pacemakers in congenital heart disease. Congenit Heart Dis 10(2):180–184

    Article  PubMed  Google Scholar 

  152. Gilbert-Barness E, Barness LA (2006) Pathogenesis of cardiac conduction disorders in children genetic and histopathologic aspects. Am J Med Genet A 140(19):1993–2006

    Article  PubMed  Google Scholar 

  153. Zaidi S, Brueckner M (2017) Genetics and genomics of congenital heart disease. Circ Res 120(6):923–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Normand C, Linde C, Singh J, Dickstein K (2018) Indications for cardiac resynchronization therapy: a comparison of the major international guidelines. JACC Heart Fail 6(4):308–316

    Article  PubMed  Google Scholar 

  155. Karpawich PP, Bansal N, Samuel S, Sanil Y, Zelin K (2017) 16 years of cardiac resynchronization pacing among congenital heart disease patients: direct contractility (dp/dt-max) screening when the guidelines do not apply. JACC Clin Electrophysiol 3(8):830–841

    Article  PubMed  Google Scholar 

  156. Manchanda M, McLeod CJ, Killu A, Asirvatham SJ (2013) Cardiac resynchronization therapy for patients with congenital heart disease: technical challenges. J Interv Card Electrophysiol 36(1):71–79

    Article  PubMed  Google Scholar 

  157. Punn R, Hanisch D, Motonaga KS, Rosenthal DN, Ceresnak SR, Dubin AM (2016) A pilot study assessing ECG versus echo ventriculoventricular optimization in pediatric resynchronization patients. J Cardiovasc Electrophysiol 27(2):210–216

    Article  PubMed  Google Scholar 

  158. Cecchin F, Frangini PA, Brown DW, Fynn-Thompson F, Alexander ME, Triedman JK et al (2009) Cardiac resynchronization therapy (and multisite pacing) in pediatrics and congenital heart disease: five years experience in a single institution. J Cardiovasc Electrophysiol 20(1):58–65

    Article  PubMed  Google Scholar 

  159. Cohen M, Saul JP, Batra AS, Friedman R, Janousek J (2011) Acute cardiac resynchronization therapy for the failing left, right, or single ventricle after repaired congenital heart disease. World J Pediatr Congenit Heart Surg. 2(3):424–429

    Article  PubMed  Google Scholar 

  160. Thambo JB, Dos Santos P, Bordachar P (2011) Cardiac resynchronization therapy in patients with congenital heart disease. Arch Cardiovasc Dis 104(6–7):410–416

    Article  PubMed  Google Scholar 

  161. van Geldorp IE, Bordachar P, Lumens J, de Guillebon M, Whinnett ZI, Prinzen FW et al (2013) Acute hemodynamic benefits of biventricular and single-site systemic ventricular pacing in patients with a systemic right ventricle. Heart Rhythm 10(5):676–682

    Article  PubMed  Google Scholar 

  162. Friedberg MK, Schwartz SM, Zhang H, Chiu-Man C, Manlhiot C, Ilina MV et al (2017) Hemodynamic effects of sustained postoperative cardiac resynchronization therapy in infants after repair of congenital heart disease: results of a randomized clinical trial. Heart Rhythm 14(2):240–247

    Article  PubMed  Google Scholar 

  163. Janousek J, Kovanda J, Lozek M, Tomek V, Vojtovic P, Gebauer R et al (2017) Pulmonary right ventricular resynchronization in congenital heart disease: acute improvement in right ventricular mechanics and contraction efficiency. Circ Cardiovasc Imaging 10(9):e006424

    Article  PubMed  Google Scholar 

  164. Horigome H (2014) Current status and future direction of cardiac resynchronization therapy for congenital heart disease and pediatric patients. Circ J 78(7):1579–1581

    Article  PubMed  Google Scholar 

  165. Butcher C, Mareev Y, Markides V, Mason M, Wong T, Cleland JG (2015) Cardiac resynchronization therapy update: evolving indications, expanding benefit? Curr Cardiol Rep 17(10):90

    Article  CAS  PubMed  Google Scholar 

  166. Daubert JC, Martins R, Leclercq C (2015) Why we have to use cardiac resynchronization therapy-pacemaker more. Card Electrophysiol Clin 7(4):709–720

    Article  PubMed  Google Scholar 

  167. Cohen MI (2015) Heart failure summit review: cardiac re-synchronisation therapy in the failing heart. Cardiol Young 25(Suppl 2):124–130

    Article  PubMed  Google Scholar 

  168. Dubin AM, Janousek J, Rhee E, Strieper MJ, Cecchin F, Law IH et al (2005) Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol 46(12):2277–2283

    Article  PubMed  Google Scholar 

  169. Janousek J, Gebauer RA (2008) Cardiac resynchronization therapy in pediatric and congenital heart disease. Pacing Clin Electrophysiol 31(Suppl 1):S21–S23

    Article  PubMed  Google Scholar 

  170. van der Hulst AE, Delgado V, Blom NA, van de Veire NR, Schalij MJ, Bax JJ et al (2011) Cardiac resynchronization therapy in paediatric and congenital heart disease patients. Eur Heart J 32(18):2236–2246

    Article  PubMed  Google Scholar 

  171. Motonaga KS, Dubin AM (2014) Cardiac resynchronization therapy for pediatric patients with heart failure and congenital heart disease: a reappraisal of results. Circulation 129(18):1879–1891

    Article  PubMed  Google Scholar 

  172. Niazi I, Dhala A, Choudhuri I, Sra J, Akhtar M, Tajik AJ (2014) Cardiac resynchronization therapy in patients with challenging anatomy due to venous anomalies or adult congenital heart disease. Pacing Clin Electrophysiol 37(9):1181–1188

    Article  PubMed  Google Scholar 

  173. McCanta AC, Perry JC (2016) Cardiac resynchronization therapy in children with heart failure. Prog Pediatr Cardiol 43:17–22

    Article  Google Scholar 

  174. Silka MJ, Bar-Cohen Y (2006) Pacemakers and implantable cardioverter-defibrillators in pediatric patients. Heart Rhythm 3(11):1360–1366

    Article  PubMed  Google Scholar 

  175. Khairy P, Harris L, Landzberg MJ, Viswanathan S, Barlow A, Gatzoulis MA et al (2008) Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation 117(3):363–370

    Article  PubMed  Google Scholar 

  176. Berul CI, Van Hare GF, Kertesz NJ, Dubin AM, Cecchin F, Collins KK et al (2008) Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol 51(17):1685–1691

    Article  PubMed  Google Scholar 

  177. Khanna AD, Warnes CA, Phillips SD, Lin G, Brady PA (2011) Single-center experience with implantable cardioverter-defibrillators in adults with complex congenital heart disease. Am J Cardiol 108(5):729–734

    Article  PubMed  Google Scholar 

  178. Von Bergen NH, Atkins DL, Dick M 2nd, Bradley DJ, Etheridge SP, Saarel EV et al (2011) Multicenter study of the effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol 32(4):399–405

    Article  Google Scholar 

  179. Atallah J, Erickson CC, Cecchin F, Dubin AM, Law IH, Cohen MI et al (2013) Multi-institutional study of implantable defibrillator lead performance in children and young adults: results of the pediatric lead extractability and survival evaluation (please) study. Circulation 127(24):2393–2402

    Article  PubMed  Google Scholar 

  180. Russo AM, Stainback RF, Bailey SR, Epstein AE, Heidenreich PA, Jessup M et al (2013) ACCF/HRS/AHA/ASE/HFSA/scai/SCCT/scmr 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American college of cardiology foundation appropriate use criteria task force, heart rhythm society, American heart association, American society of echocardiography, heart failure Society of America, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance. J Am Coll Cardiol 61(12):1318–1368

    Article  PubMed  Google Scholar 

  181. Triedman JK (2008) Should patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% undergo prophylactic implantation of an ICD? Implantable cardioverter defibrillator implantation guidelines based solely on left ventricular ejection fraction do not apply to adults with congenital heart disease. Circ Arrhythm Electrophysiol 1(4):307–316; discussion 16

    Google Scholar 

  182. Silka MJ, Bar-Cohen Y (2008) Should patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% undergo prophylactic implantation of an ICD? Patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% should undergo prophylactic implantation of an implantable cardioverter defibrillator. Circ Arrhythm Electrophysiol 1(4):298–306

    Article  PubMed  Google Scholar 

  183. Vehmeijer JT, Brouwer TF, Limpens J, Knops RE, Bouma BJ, Mulder BJ et al (2016) Implantable cardioverter-defibrillators in adults with congenital heart disease: a systematic review and meta-analysis. Eur Heart J 37(18):1439–1448

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hayward RM, Dewland TA, Moyers B, Vittinghoff E, Tanel RE, Marcus GM et al (2015) Device complications in adult congenital heart disease. Heart Rhythm 12(2):338–344

    Article  PubMed  Google Scholar 

  185. Gleva MJ, Wang Y, Curtis JP, Berul CI, Huddleston CB, Poole JE (2017) Complications associated with implantable cardioverter defibrillators in adults with congenital heart disease or left ventricular noncompaction cardiomyopathy (from the ncdr((r)) implantable cardioverter-defibrillator registry). Am J Cardiol 120(10):1891–1898

    Article  PubMed  Google Scholar 

  186. Jordan CP, Freedenberg V, Wang Y, Curtis JP, Gleva MJ, Berul CI (2014) Implant and clinical characteristics for pediatric and congenital heart patients in the national cardiovascular data registry implantable cardioverter defibrillator registry. Circ Arrhythm Electrophysiol 7(6):1092–1100

    Article  PubMed  Google Scholar 

  187. Dechert BE, Bradley DJ, Serwer GA, Dick Ii M, Lapage MJ (2016) Implantable cardioverter defibrillator outcomes in pediatric and congenital heart disease: time to system revision. Pacing Clin Electrophysiol 39(7):703–708

    Article  PubMed  Google Scholar 

  188. Bouzeman A, Marijon E, de Guillebon M, Ladouceur M, Duthoit G, Amet D et al (2014) Implantable cardiac defibrillator among adults with transposition of the great arteries and atrial switch operation: case series and review of literature. Int J Cardiol 177(1):301–306

    Article  PubMed  Google Scholar 

  189. Webster G, Panek KA, Labella M, Taylor GA, Gauvreau K, Cecchin F et al (2014) Psychiatric functioning and quality of life in young patients with cardiac rhythm devices. Pediatrics 133(4):e964–e972

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bedair R, Babu-Narayan SV, Dimopoulos K, Quyam S, Doyle AM, Swan L et al (2015) Acceptance and psychological impact of implantable defibrillators amongst adults with congenital heart disease. Int J Cardiol 181:218–224

    Article  PubMed  Google Scholar 

  191. D’Souza BA, Epstein AE, Garcia FC, Kim YY, Agarwal SC, Belott PH et al (2016) Outcomes in patients with congenital heart disease receiving the subcutaneous implantable-cardioverter defibrillator. JACC Clin Electrophysiol 2(5):615–622

    Article  PubMed  Google Scholar 

  192. Al-Khatib SM, Friedman P, Ellenbogen KA (2016) Defibrillators: selecting the right device for the right patient. Circulation 134(18):1390–1404

    Article  PubMed  Google Scholar 

  193. Friedman DJ, Parzynski CS, Varosy PD, Prutkin JM, Patton KK, Mithani A et al (2016) Trends and in-hospital outcomes associated with adoption of the subcutaneous implantable cardioverter defibrillator in the United States. JAMA Cardiol 1(8):900–911

    Article  PubMed  PubMed Central  Google Scholar 

  194. van Rees JB, de Bie MK, Thijssen J, Borleffs CJ, Schalij MJ, van Erven L (2011) Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized clinical trials. J Am Coll Cardiol 58(10):995–1000

    Article  PubMed  Google Scholar 

  195. Persson R, Earley A, Garlitski AC, Balk EM, Uhlig K (2014) Adverse events following implantable cardioverter defibrillator implantation: a systematic review. J Interv Card Electrophysiol 40(2):191–205

    Article  PubMed  Google Scholar 

  196. Poole JE (2014) Present guidelines for device implantation: clinical considerations and clinical challenges from pacing, implantable cardiac defibrillator, and cardiac resynchronization therapy. Circulation 129(3):383–394

    Article  PubMed  Google Scholar 

  197. McCanta AC, Kong MH, Carboni MP, Greenfield RA, Hranitzky PM, Kanter RJ (2013) Laser lead extraction in congenital heart disease: a case-controlled study. Pacing Clin Electrophysiol 36(3):372–380

    Article  PubMed  Google Scholar 

  198. Wilkoff BL, Love CJ, Byrd CL, Bongiorni MG, Carrillo RG, Crossley GH 3rd et al (2009) Transvenous lead extraction: heart rhythm society expert consensus on facilities, training, indications, and patient management: this document was endorsed by the American heart association (AHA). Heart Rhythm 6(7):1085–1104

    Article  PubMed  Google Scholar 

  199. Kusumoto FM, Schoenfeld MH, Wilkoff BL, Berul CI, Birgersdotter-Green UM, Carrillo R et al (2017) 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 14(12):e503–e551

    Google Scholar 

  200. Fender EA, Killu AM, Cannon BC, Friedman PA, McLeod CJ, Hodge DO et al (2017) Lead extraction outcomes in patients with congenital heart disease. Europace 19(3):441–446

    PubMed  Google Scholar 

  201. Wazni O, Epstein LM, Carrillo RG, Love C, Adler SW, Riggio DW et al (2010) Lead extraction in the contemporary setting: the lexicon study: an observational retrospective study of consecutive laser lead extractions. J Am Coll Cardiol 55(6):579–586

    Article  CAS  PubMed  Google Scholar 

  202. El-Chami MF, Sayegh MN, Patel A, El-Khalil J, Desai Y, Leon AR et al (2017) Outcomes of lead extraction in young adults. Heart Rhythm 14(4):537–540

    Article  PubMed  Google Scholar 

  203. Brunner MP, Cronin EM, Wazni O, Baranowski B, Saliba WI, Sabik JF et al (2014) Outcomes of patients requiring emergent surgical or endovascular intervention for catastrophic complications during transvenous lead extraction. Heart Rhythm 11(3):419–425

    Article  PubMed  Google Scholar 

  204. Barakat AF, Wazni OM, Tarakji K, Saliba WI, Nimri N, Rickard J et al (2017) Transvenous lead extraction at the time of cardiac implantable electronic device upgrade: complexity, safety, and outcomes. Heart Rhythm 14(12):1807–1811

    Article  PubMed  Google Scholar 

  205. Tarakji KG, Saliba W, Markabawi D, Rodriguez ER, Krauthammer Y, Brunner MP et al (2018) Unrecognized venous injuries after cardiac implantable electronic device transvenous lead extraction. Heart Rhythm 15(3):318–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine Mavroudis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deal, B.J., Mavroudis, C. (2023). Surgical Treatment of Arrhythmias and Conduction Disorders. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_143-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_143-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics