Skip to main content

Metasurface Transformation Theory

  • Chapter
  • First Online:

Abstract

Metasurfaces constitute a class of thin metamaterials, which are used from microwave to optical frequencies to create new antennas and microwave devices. This chapter describes how to use transformation optics (TO) to create anisotropic modulated-impedance metasurfaces able to transform planar surface waves (SW) into a predefined curved-wavefront surface wave. In fact, the modulated anisotropic impedance imposes a local modification of the dispersion equation and, at constant operating frequency, of the local wavevector. The general effects of metasurface modulation are similar to those obtained by TO in volumetric inhomogeneous metamaterials, namely readdressing the propagation path of an incident wave; however, significant technological simplicity is gained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic field. Science 312(5781):1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonhardt U (2006) Optical conformal mapping. Science 312(5781):1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  3. Yaghjian A, Maci S (2008) Alternative derivation of electromagnetic cloaks and concentrators. New J Phys 10:1–29

    Article  Google Scholar 

  4. Maci S, Minatti G, Casaletti M, Bosiljevac M (2011) Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antenn Wirel Pr 10:1499–1502

    Article  Google Scholar 

  5. Holloway CL, Dienstfrey A, Kuester EF, O’Hara JF, Azad AK, Taylor AJ (2009) A discussion on the interpretation and characterization of metafilms/metasurfaces: the two dimensional equivalent of metamaterials. Metamaterials 3:100–112

    Article  Google Scholar 

  6. Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antenn Propag M 54(2):10–35

    Article  Google Scholar 

  7. Silverinha MG, Fernandes CA, Costa JR (2008) Electromagnetic charactrerization of textured surfaces formed by metallic pins. IEEE T Antenn Propag 56(2):405–415

    Article  Google Scholar 

  8. Kildal PS, Kishk A, Maci S (2005) Special issue in artificial magnetic conductors, soft/hard surfaces, and other complex surfaces. IEEE T Antenn Propag, 53(1), p 1

    Google Scholar 

  9. Sievenpiper D, Zhang L, Broas FJ, Alexopulos NG, Yablanovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE T Microw Theory 47(11):2059–2074

    Article  Google Scholar 

  10. Maci S, Caiazzo M, Cucini A, Casaletti M (2005) A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE T Antenn Propag 53(1):70–78

    Article  Google Scholar 

  11. Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen AV, Tretyakov SA (2008) Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE T Antenn Propag 56(6):1624–1632

    Article  Google Scholar 

  12. Bosiljevac M, Casaletti M, Caminita F, Sipus Z, Maci S (2011) Non-uniform metasurface luneburg lens antenna design. IEEE T Antenn Propagat 60(9):4065–4073

    Article  MathSciNet  Google Scholar 

  13. Pfeiffer C, Grbic A (2010) A printed, broadband luneburg lens antenna. IEEE T Antenn Propag 58(9):3055–3059

    Article  Google Scholar 

  14. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  Google Scholar 

  15. Casaletti M, Caminita F, Maci S, Bosiljevac M, Sipus Z (2011) New type of horn based on variable metasurface. IEEE AP-S 2011:1048–1050

    Google Scholar 

  16. Minatti G, Caminita F, Casaletti M, Maci S (2011) Spiral leaky-wave antennas based on modulated surface impedance. IEEE T Antenn Propag 59(12):4436–4444

    Article  MathSciNet  Google Scholar 

  17. Hoppe J, Rahmats Samii Y (1995) Impedance boundary conditions in electromagnetics. Taylor and Francis, Washington pp 135–137

    Google Scholar 

  18. Gok G, Grbic A (2010) Tensor transmission-line metamaterials. IEEE T Antenn Propag 58(5):1559–1566

    Article  Google Scholar 

  19. Fong BH, Colburn JS, Ottusch JJ, Visher JL, Sievenpiper DF (2010) Scalar and tensor holographic artificial impedance surfaces. IEEE T Antenn Popag 58(10):3212–3221

    Article  Google Scholar 

  20. Minatti G, Maci S, De Vita P, Freni A, Sabbadini M (2012) A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE T Antenn Propag 60 (12)

    Google Scholar 

  21. Tang W, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE T Antenn Propag 58(12):3795–3804

    Article  Google Scholar 

  22. Yang R, Tang W, Hao Y (2011) Wideband beam-steerable flat reflectors via transformation optics. Antenn Wirel Pr 10:99–102

    Article  Google Scholar 

  23. Yang R, Hao Y (2012) An accurate control of the surface wave using transformation optics. Opt Express 20(9):9341–9350

    Article  Google Scholar 

  24. Li J, Pendry J (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101(20):203901–203905

    Article  Google Scholar 

  25. Yaghjian A, Maci S, Martini E (2009) Electromagnetic cloaks and concentrators. In: Capolino F (ed) Handbook of artificial materials. vol I phenomena and theory. ISBN: 978-1-4200536-2-2010

    Google Scholar 

  26. Martini E, Maci S, Yaghjian A (2011) Cloaking in terms of non-radiating cancelling currents. In: Galdi V (ed) Selected topics in metamaterials and photonic crystals. World Scientific, Singapore

    Google Scholar 

  27. Martini E, Maci S, Yaghjian A (2009) Characteristic wave velocities in spherical electromagnetic cloaks. New J Phys 11 113011 10.1088/1367-2630/11/11/113011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Maci .

Editor information

Editors and Affiliations

Appendices

Appendix A Fundamentals of Transformation Optics

Let us consider Maxwell’s equation in absence of sources in primed space (assumed for simplicity as free space)

$$ \begin{aligned} & \nabla \times {\mathbf{E}}^{\prime} = - j\omega \mu_{0} {\mathbf{H}}^{\prime} \\ & \nabla \times {\mathbf{H}}^{\prime} = j\omega \varepsilon_{0} {\mathbf{E}}^{\prime} \\ \end{aligned} $$
(3.65)

The observation point of this space, that will be denoted in the following as “virtual space” or “transformed space”, will be identified by the vector \( {\mathbf{r}}' = x'{\hat{\mathbf{x}}}' + y'{\hat{\mathbf{y}}}' + z'{\hat{\mathbf{z}}}' \). The physical space individuated by \( {\mathbf{r}} = x{\hat{\mathbf{x}}} + y{\hat{\mathbf{y}}} + z{\hat{\mathbf{z}}} \) will be instead denoted as “real space”. For simplicity, Cartesian coordinates have been chosen in both spaces. The real space is mapped to the virtual space by a 3D invertible transformation \( {\varvec{\Upgamma}} \); conversely, the inverse transformation \( {\varvec{\Upgamma}}^{ - 1} \) maps the virtual space to the real space

$$ {\mathbf{r}}^{\prime} = {\varvec{\Upgamma}}\left( {\mathbf{r}} \right):\left\{ {x,y,z} \right\} \to \left\{ {x^{\prime} (x,y,z),y^{\prime} (x,y,z),z^{\prime} (x,y,z)} \right\} $$
(3.66)
$$ {\mathbf{r}} = {\varvec{\Upgamma}}^{ - 1} \left( {{\mathbf{r}}\,^{\prime} } \right):\left\{ {x\,^{\prime} ,y\,^{\prime} ,z\,^{\prime} } \right\} \to \left\{ {x(x\,^{\prime} ,y\,^{\prime} ,z\,^{\prime} ),y(x\,^{\prime} ,y\,^{\prime} ,z\,^{\prime} ),z(x\,^{\prime} ,y\,^{\prime} ,z\,^{\prime} )} \right\} $$
(3.67)

The coordinate transformation \( {\varvec{\Upgamma}} \) is the one on which the TO process is based. Note that several authors interchange the definition of transformation and inverse transformation, so that the domain is the virtual space and the co-domain is the real space. On the basis of TO, Maxwell’s equations in the real space are satisfied provided that the real space is filled with an inhomogeneous anisotropic medium characterized by tensors \( \underline{\underline{\mu }} \) and \( \underline{\underline{{\mathbf{\varepsilon }}}} \) properly related to the coordinate transformation. Hence, Maxwell’s equations in the real space are written as [25, 26]

$$ \begin{aligned} & \nabla \times {\mathbf{E}} = - j\omega \underline{\underline{{\varvec{\mu}}}} \cdot {\mathbf{H}} \\ & \nabla \times {\mathbf{H}} = j\omega \underline{\underline{{\mathbf{\varepsilon }}}} \cdot {\mathbf{E}} \\ \end{aligned} $$
(3.68)

In (3.68), the nabla operator \( \nabla \, = \,\frac{\partial }{\partial x}{\hat{\mathbf{x}}} + \frac{\partial }{\partial y}{\hat{\mathbf{y}}} + \frac{\partial }{\partial z}{\hat{\mathbf{z}}} \) acts on the Cartesian coordinates of the real space. The electric and magnetic fields are expressed as

$$ \begin{aligned} & {\mathbf{E}}({\mathbf{r}}) = \underline{\underline{{\mathbf{M}}}}^{T} ({\mathbf{r}}) \cdot {\mathbf{E}}^{\prime} ({\mathbf{r}}^{\prime} ), \\ & {\mathbf{H}}({\mathbf{r}}) = \underline{\underline{{\mathbf{M}}}}^{T} ({\mathbf{r}}) \cdot {\mathbf{H}}^{\prime} ({\mathbf{r}}^{\prime} ) \\ \end{aligned} $$
(3.69)

where \( {\mathbf{r}}' = {\varvec{\Upgamma}}\left( {\mathbf{r}} \right) \) and the Jacobian tensor \( \underline{\underline{{\mathbf{M}}}} \) is defined as

$$ \begin{aligned} & \underline{\underline{{\mathbf{M}}}} ({\mathbf{r}}) = \left( {\frac{{\partial {\mathbf{r}}^{\prime} }}{{\partial {\mathbf{r}}}}} \right) = \sum\limits_{i,j = 1,3}^{{}} {\frac{{\partial x_{i} ^{\prime} }}{{\partial x_{j} }}{\hat{\mathbf{x}}}_{i} ^{\prime} } {\hat{\mathbf{x}}}_{j} \\ & \underline{\underline{{\mathbf{M}}}}^{ - 1} ({\mathbf{r}}) = \sum\limits_{i,j = 1,3}^{{}} {\frac{{\partial x_{j} }}{{\partial x_{i} ^{\prime} }}{\hat{\mathbf{x}}}_{j} } {\hat{\mathbf{x}}}_{i} ^{\prime} \\ \end{aligned} $$
(3.70)

In (3.70) for simplifying the notation we have redefined \( \left\{ {x,y,z} \right\} \equiv \left\{ {x_{1} ,x_{2} ,x_{3} } \right\} \), \( \left\{ {x^{\prime} ,y^{\prime} ,z^{\prime} } \right\} \equiv \left\{ {x_{1} ^{\prime} ,x_{2} ^{\prime} ,x_{3} ^{\prime} } \right\} \); \( {\hat{\mathbf{x}}},{\hat{\mathbf{y}}},{\hat{\mathbf{z}}} \equiv {\hat{\mathbf{x}}}_{1} ,{\hat{\mathbf{x}}}_{2} ,{\hat{\mathbf{x}}}_{3} , \) and \( {\hat{\mathbf{x}}}^{\prime} ,{\hat{\mathbf{y}}}^{\prime} ,{\hat{\mathbf{z}}}^{\prime} \equiv {\hat{\mathbf{x}}}_{1} ^{\prime} ,{\hat{\mathbf{x}}}_{2} ^{\prime} ,{\hat{\mathbf{x}}}_{3} ^{\prime} \). In the following, we will use this latter indexed notation when needed within summation symbol. The permittivity and permeability TO tensors in (3.68) are related to the Jacobian tensors by the following equations

$$ \frac{1}{{\mu_{0} }}\underline{\underline{{\varvec{\mu}}}} = \frac{1}{{\varepsilon_{0} }} \, \underline{\underline{{\mathbf{\varepsilon }}}} = \underline{\underline{{\varvec{\alpha}}}} \, ; \, \underline{\underline{{\varvec{\alpha}}}} = \det [\underline{\underline{{\mathbf{M}}}} ]\underline{\underline{{\mathbf{M}}}}^{ - 1} \cdot \left( {\underline{\underline{{\mathbf{M}}}}^{T} } \right)^{ - 1} \, $$
(3.71)

The induced electric and magnetic fields are given by

$$ \begin{aligned} {\mathbf{D}}\left( {\mathbf{r}} \right) = \det (\underline{\underline{{\mathbf{M}}}} )\underline{\underline{{\mathbf{M}}}}^{ - 1} \cdot \varepsilon_{0} {\mathbf{E}}^{\prime} \left( {{\mathbf{r}}^{\prime} } \right) \hfill \\ {\mathbf{B}}\left( {\mathbf{r}} \right) = \det (\underline{\underline{{\mathbf{M}}}} )\underline{\underline{{\mathbf{M}}}}^{ - 1} \cdot \mu_{0} {\mathbf{H}}^{\prime} \left( {{\mathbf{r}}^{\prime} } \right) \hfill \\ \end{aligned} $$
(3.72)

Being the real space inhomogeneous, rays propagate there along curvilinear paths; these paths are mapped to straight lines in the virtual space. It is convenient to introduce covariant basis \( {\mathbf{g}}_{i} = {{\partial {\mathbf{r}}} \mathord{\left/ {\vphantom {{\partial {\mathbf{r}}} {\partial x_{i} '}}} \right. \kern-0pt} {\partial x_{i} '}} = \sum\nolimits_{j} {{{\partial x_{j} } \mathord{\left/ {\vphantom {{\partial x_{j} } {\partial x_{i} '}}} \right. \kern-0pt} {\partial x_{i} '}}{\hat{\mathbf{x}}}_{j} } \) and contravariant basis \( {\mathbf{g}}^{i} = \nabla x_{i} ' = \sum\nolimits_{j} {{{\partial x_{i} '} \mathord{\left/ {\vphantom {{\partial x_{i} '} {\partial x_{j} }}} \right. \kern-0pt} {\partial x_{j} }}{\hat{\mathbf{x}}}_{j} } \) of the coordinate transformation \( {\varvec{\Upgamma}} \), as well as covariant basis \( {\varvec{\gamma}}_{j} = {{\partial {\mathbf{r}}'} \mathord{\left/ {\vphantom {{\partial {\mathbf{r}}'} {\partial x_{j} }}} \right. \kern-0pt} {\partial x_{j} }} = \sum\nolimits_{i} {{{\partial x_{i} '} \mathord{\left/ {\vphantom {{\partial x_{i} '} {\partial x_{j} }}} \right. \kern-0pt} {\partial x_{j} }}{\hat{\mathbf{x}}}_{i} '} \) and contravariant basis \( {\varvec{\gamma}}^{j} = \nabla 'x_{j} = \sum\nolimits_{i} {{{\partial x_{j} } \mathord{\left/ {\vphantom {{\partial x_{j} } {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}'{\hat{\mathbf{x}}}_{i} '} \) of the inverse coordinate transformation \( {\varvec{\Upgamma}}^{ - 1} \). Figure 3.22 illustrates an example. Note that \( {\mathbf{g}}_{i} ,{\mathbf{g}}^{i} \) and \( {\varvec{\gamma}}_{j} ,{\varvec{\gamma}}^{j} \) are defined in the real space and in the transformed space, respectively. The two introduced bases are bi-orthogonal, namely \( {\mathbf{g}}^{i} \cdot {\mathbf{g}}_{j} = \delta_{ij} ,{\varvec{\gamma}}^{i} \cdot {\varvec{\gamma}}_{j} = \delta_{ij} \), and

$$ \begin{array}{*{20}c} {{\mathbf{g}}^{1} \times {\mathbf{g}}^{2} = {\mathbf{g}}_{3} /\sqrt g } \\ {{\mathbf{g}}^{2} \times {\mathbf{g}}^{3} = {\mathbf{g}}_{1} /\sqrt g } \\ {{\mathbf{g}}^{3} \times {\mathbf{g}}^{1} = {\mathbf{g}}_{2} /\sqrt g } \\ \end{array} ;\begin{array}{*{20}c} {{\mathbf{g}}_{1} \times {\mathbf{g}}_{2} = {\mathbf{g}}^{3} \sqrt g } \\ {{\mathbf{g}}_{2} \times {\mathbf{g}}_{3} = {\mathbf{g}}^{1} \sqrt g } \\ {{\mathbf{g}}_{3} \times {\mathbf{g}}_{1} = {\mathbf{g}}^{2} \sqrt g } \\ \end{array} $$
(3.73)

where \( \det \underline{\underline{{\mathbf{M}}}} = 1/\sqrt g \). The Jacobian tensor, its inverse, and its determinant can be written in terms of covariant and contravariant basis as

$$ \underline{\underline{{\mathbf{M}}}} = \sum\limits_{i = 1,3}^{{}} {{\hat{\mathbf{x}}}_{i} ^{\prime} } {\mathbf{g}}^{i} = \sum\limits_{j = 1,3}^{{}} {{\varvec{\gamma}}_{j} {\hat{\mathbf{x}}}_{j} } $$
(3.74)
$$ \underline{\underline{{\mathbf{M}}}}^{ - 1} = \sum\limits_{i = 1,3}^{{}} {{\mathbf{g}}_{i} {\hat{\mathbf{x}}}_{i} ^{\prime} } = \sum\limits_{j = 1,3}^{{}} {{\hat{\mathbf{x}}}_{j} } {\varvec{\gamma}}^{j} $$
(3.75)
$$ \det \underline{\underline{{\mathbf{M}}}} = \frac{1}{\sqrt g } = {\mathbf{g}}^{3} \cdot \left( {{\mathbf{g}}^{1} \times {\mathbf{g}}^{2} } \right) = \frac{1}{{{\mathbf{g}}_{3} \cdot \left( {{\mathbf{g}}_{1} \times {\mathbf{g}}_{2} } \right)}} = {\varvec{\gamma}}_{3} \cdot \left( {{\varvec{\gamma}}_{1} \times {\varvec{\gamma}}_{2} } \right) = \frac{1}{{{\varvec{\gamma}}^{3} \cdot \left( {{\varvec{\gamma}}^{1} \times {\varvec{\gamma}}^{2} } \right)}} $$
(3.76)
Fig. 3.22
figure 22

Coordinate planes and coordinate lines in the real space as transformed from the cartesian planes and coordinates in the virtual space and covariant and contravariant bases

Using (3.74) in (3.69), and observing that the transpose operation in (3.69) swaps the order of the vectors in the dyads in (3.74), leads to

$$ {\mathbf{E}}({\mathbf{r}}) = \sum\limits_{i = 1,3}^{{}} {{\mathbf{g}}^{i} } \left[ {{\hat{\mathbf{x}}}_{i} ^{\prime} \cdot {\mathbf{E}}^{\prime} ({\mathbf{r}}^{\prime} )} \right] $$
(3.77)
$$ {\mathbf{H}}({\mathbf{r}}) = \sum\limits_{i = 1,3}^{{}} {{\mathbf{g}}^{i} } \left[ {{\hat{\mathbf{x}}}_{i} ^{\prime} \cdot {\mathbf{H}}^{\prime} ({\mathbf{r}}^{\prime} )} \right] $$
(3.78)
$$ {\mathbf{D}}\left( {\mathbf{r}} \right) = \frac{1}{\sqrt g }\sum\limits_{i = 1,3}^{{}} {{\mathbf{g}}_{i} } \left[ {{\hat{\mathbf{x}}}_{i} ^{\prime} \cdot {\mathbf{D}}^{\prime} \left( {{\mathbf{r}}^{\prime} } \right)} \right] $$
(3.79)
$$ {\mathbf{B}}\left( {\mathbf{r}} \right) = \frac{1}{\sqrt g }\sum\limits_{i = 1,3}^{{}} {{\mathbf{g}}_{i} } \left[ {{\hat{\mathbf{x}}}_{i} ^{\prime} \cdot {\mathbf{B}}^{\prime} \left( {{\mathbf{r}}^{\prime} } \right)} \right] $$
(3.80)

which identifies the electric and magnetic field Cartesian components in the virtual space with the covariant components of the fields in the real space. On the other hand, the Cartesian components of the electric and magnetic inductions in the virtual space represent the contravariant components of the inductions in the real space.

The normalized tensors are indeed expressed through (3.71) and (3.753.76) as

$$ \, \underline{\underline{{\varvec{\alpha}}}} = \frac{1}{\sqrt g }\sum\limits_{i,j = 1,3}^{{}} {{\hat{\mathbf{x}}}_{i} } {\hat{\mathbf{x}}}_{j} \left[ {{\varvec{\gamma}}^{i} \, \cdot {\varvec{\gamma}}^{j} } \right] $$
(3.81)

We observe that for orthogonal transformations covariant vectors coincide with contravariant vectors.

The tensor \({\underline{\underline {{\alpha }}} }\) can be represented in the reference system identified by unit vectors \( {\hat{\mathbf{e}}}_{i} \) aligned with its principal axes as follows

$$ \mathop {\varvec{\alpha}}\limits_{ = } = \hat{e}_{1} \hat{e}_{1} \sigma_{1} + \hat{e}_{2} \hat{e}_{2} \sigma_{2} + \hat{e}_{3} \hat{e}_{3} \sigma_{3} $$
(3.82)

where \( \sigma_{i} \) are the principal values of \({\underline{\underline {{\alpha }}} }\). Note that the unit vectors \( {\hat{\mathbf{e}}}_{i} = {\hat{\mathbf{e}}}_{i} ({\mathbf{r}}) \) are in general space dependent. The dispersion equation for local plane waves propagating with \( {\mathbf{r}} \)-dependent wavevector \( {\mathbf{k}} = k_{x} {\hat{\mathbf{x}}} + k_{y} {\hat{\mathbf{y}}} + k_{z} {\hat{\mathbf{z}}} = k_{1} {\hat{\mathbf{e}}}_{1} + k_{2} {\hat{\mathbf{e}}}_{2} + k_{3} {\hat{\mathbf{e}}}_{3} \) (\( k_{i} = {\mathbf{k}} \cdot {\hat{\mathbf{e}}}_{i} \)) can be written as

$$ k_{1}^{2} \sigma_{1} + k_{2}^{2} \sigma_{2} + k_{3}^{2} \sigma_{3} - k^{2} \sigma_{1} \sigma_{2} \sigma_{3} = 0 $$
(3.83)

where \( k = \omega \sqrt {\varepsilon_{o} \mu_{o} } \) is the free-space wavenumber. We note that this equation is valid for both TE and TM modes with respect to one of the three axes; degeneration of TE/TM mode phase velocity in TO media was underlined in Ref. [27] with reference to a spherical cloak. For positive values of \( \sigma_{i} \), (3.83) represents in the \( {\mathbf{k}} \)-space an ellipsoid with axes aligned with the principal axes \( {\hat{\mathbf{e}}}_{i} \) and semi-axes given by \( k\sqrt {\sigma_{2} \sigma_{3} } ,\,k\sqrt {\sigma_{1} \sigma_{3} } ,\,k\sqrt {\sigma_{1} \sigma_{2} } \) along \( {\hat{\mathbf{e}}}_{1} ,\,{\hat{\mathbf{e}}}_{2} ,\,{\hat{\mathbf{e}}}_{3} \) , respectively. The coordinate- free expression of this ellipse is \( {\mathbf{k}} \cdot \underline{\underline{{\varvec{\alpha}}}} \cdot {\mathbf{k}} = k^{2} \sigma_{1} \sigma_{2} \sigma_{3} . \) (Fig. 3.23)

Fig. 3.23
figure 23

Dispersion ellipse for a given constitutive parameter tensor

Appendix B -Dispersion Equation for an Anisotropic Tensor

To solve (3.41) in terms of \( \sqrt {{\mathbf{k}}_{t} \cdot {\mathbf{k}}_{t} } \), we project \( \underline{\underline{{\mathbf{X}}}}_{S}^{eq} \) along the basis \( {\hat{\mathbf{k}}}_{t} \), \( {\hat{\mathbf{z}}} \times {\hat{\mathbf{k}}}_{t} = {\hat{\mathbf{k}}}_{t}^{ \bot } \), i.e.,

$$ \begin{aligned} \underline{\underline{{\mathbf{X}}}}_{S}^{eq} & = X^{ee} {\hat{\mathbf{k}}}_{t} {\hat{\mathbf{k}}}_{t} + X^{hh} {\hat{\mathbf{k}}}_{t}^{ \bot } {\hat{\mathbf{k}}}_{t}^{ \bot } + X^{eh} \left( {{\hat{\mathbf{k}}}_{t}^{{}} {\hat{\mathbf{k}}}_{t}^{ \bot } + {\hat{\mathbf{k}}}_{t}^{ \bot } {\hat{\mathbf{k}}}} \right)_{t}^{{}} \hfill \\ X^{ee} & = {\hat{\mathbf{k}}}_{t} \cdot (X_{1} {\hat{\mathbf{e}}}_{1} {\hat{\mathbf{e}}}_{1} + X_{2} {\hat{\mathbf{e}}}_{2} {\hat{\mathbf{e}}}_{2} ) \cdot {\hat{\mathbf{k}}}_{t} = \cos^{2} (\psi - \phi )X_{1} + \sin^{2} (\psi - \phi )X_{2} \hfill \\ X^{hh} & = {\hat{\mathbf{k}}}_{t}^{ \bot } \cdot (X_{1} {\hat{\mathbf{e}}}_{1} {\hat{\mathbf{e}}}_{1} + X_{2} {\hat{\mathbf{e}}}_{2} {\hat{\mathbf{e}}}_{2} ) \cdot {\hat{\mathbf{k}}}_{t}^{ \bot } = \sin^{2} (\psi - \phi )X_{1} + \cos^{2} (\psi - \phi )X_{2} \hfill \\ X^{eh} & = {\hat{\mathbf{k}}}_{t}^{{}} \cdot (X_{1} {\hat{\mathbf{e}}}_{1} {\hat{\mathbf{e}}}_{1} + X_{2} {\hat{\mathbf{e}}}_{2} {\hat{\mathbf{e}}}_{2} ) \cdot {\hat{\mathbf{k}}}_{t}^{ \bot } = \sin (\psi - \phi )\cos (\psi - \phi )(X_{1} - X_{2} ) \hfill \\ \end{aligned} $$
(3.84)

where \( \cos \psi = {\hat{\mathbf{e}}}_{1} \cdot {\hat{\mathbf{x}}},\;\sin \psi = {\hat{\mathbf{e}}}_{1} \cdot {\hat{\mathbf{y}}} ; {\text{ cos}}\phi = {\hat{\mathbf{k}}}_{t} \cdot {\hat{\mathbf{x}}},\;\sin \phi = {\hat{\mathbf{k}}}_{t} \cdot {\hat{\mathbf{y}}} \). An explicit expression of \( \psi \) is given in (3.22). The dispersion (3.41) can be therefore rewritten as

$$ \det \left[ {\underline{\underline{{\mathbf{X}}}}_{S}^{eq} + \underline{\underline{{\mathbf{X}}}}_{0} } \right] = \left( {X^{ee} + X_{0}^{TM} } \right)\left( {X^{hh} + X_{0}^{TE} } \right) - (X^{eh} )^{2} = 0 $$
(3.85)

The latter equation can be simplified by exploiting the identities \( X_{0}^{TE} X_{0}^{TM} = - \zeta^{2} \) and \( X_{{}}^{ee} X_{{}}^{hh} - (X_{{}}^{eh} )^{2} = \det \underline{\underline{{\mathbf{X}}}}_{S}^{eq} = X_{1} X_{2} \). This leads to

$$ X^{ee} X_{0}^{TE} + X^{hh} X_{0}^{TM} + X_{1} X_{2} - \zeta^{2} = 0 $$
(3.86)

Solving (3.86) in terms of \( \eta = \sqrt {{\mathbf{k}}_{t} \cdot {\mathbf{k}}_{t} /k^{2} - 1} = - X_{TM} /\zeta = \zeta /X_{TE} \) provides

$$ \sqrt {{\mathbf{k}}_{t} \cdot {\mathbf{k}}_{t} /k^{2} - 1} = \frac{1}{{2\zeta X_{hh}^{{}} }}\left\{ {\left( {X_{1}^{{}} X_{2}^{{}} - \zeta^{2} } \right) + \sqrt {\left( {X_{1}^{{}} X_{2}^{{}} - \zeta^{2} } \right)^{2} + 4X_{ee}^{{}} X_{hh}^{{}} \zeta^{2} } } \right\} $$
(3.87)

The above equation can be approximated by

$$ \frac{{{\mathbf{k}}_{t} \cdot {\mathbf{k}}_{t} }}{{k^{2} }} \approx \left( {\frac{{\cos^{2} (\psi - \phi )}}{{1 + \left( {X_{1} /\zeta } \right)^{2} }} + \frac{{\sin^{2} (\psi - \phi )}}{{1 + \left( {X_{2} /\zeta } \right)^{2} }}} \right)^{ - 1} $$
(3.88)

which is an ellipse with the main axes aligned with the eigenvectors \( {\hat{\mathbf{e}}}_{1} ,\,{\hat{\mathbf{e}}}_{2} \) and semi-axes equal to \( \frac{{k_{i} }}{k} \approx \sqrt {1 + \left( {X_{i} /\zeta } \right)^{2} } \). The maximum deviation of the approximation in (3.88) from (3.87) is exactly given by

$$ \left| {\frac{{{\mathbf{k}}_{t} \cdot {\mathbf{k}}_{t} }}{{k^{2} }}\left[ {\frac{{\cos^{2} (\psi - \phi )}}{{1 + \left( {X_{1} /\zeta } \right)^{2} }} + \frac{{\sin^{2} (\psi - \phi )}}{{1 + \left( {X_{2} /\zeta } \right)^{2} }}} \right] - 1} \right|_{MAX\;\phi } = \left| {f\left( {\frac{{X_{1} }}{\zeta },\frac{{X_{2} }}{\zeta }} \right)} \right| $$
(3.89)

with

$$ f\left( {\frac{{X_{1} }}{\zeta },\frac{{X_{2} }}{\zeta }} \right) = \frac{{\left( {\frac{{X_{1} }}{\zeta } - \frac{{X_{2} }}{\zeta }} \right)^{2} - \left( {\sqrt {\frac{{X_{1} }}{{X_{2} }}} - \sqrt {\frac{{X_{2} }}{{X_{1} }}} } \right)^{2} }}{{4\left( {\frac{{X_{1} }}{\zeta } + \frac{\zeta }{{X_{1} }}} \right)\left( {\frac{{X_{2} }}{\zeta } + \frac{\zeta }{{X_{2} }}} \right)}} $$
(3.90)

This relation has been obtained analytically by imposing a vanishing derivative of the error function with respect to \( \psi - \phi \).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Martini, E., Maci, S. (2014). Metasurface Transformation Theory. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics