Skip to main content

State-of-the-Art for Nanomanufacturing Using Ion-Beam Technology

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Ion-beam manufacturing is developing toward nanoaccuracy and nanoscale. In this regard, the concept and working principle of ion-beam manufacturing in nanoaccuracy and nanoscale are presented in this chapter. The key techniques for ion-beam manufacturing are discussed with an emphasis on their capabilities in the fabrication of micro-/nano-features. The corresponding typical applications involved in ion-beam manufacturing are provided. The recent developments in ion-beam-related instruments are given as well. Finally, the future trends for ion-beam manufacturing are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DP, Vasile MJ (2006) Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach. J Vac Sci Technol 2:836–844

    Article  Google Scholar 

  • Ali MY, Hung W, Fu YQ (2010) A review of focused Ion beam sputtering. Int J Precis Eng Manuf 11:157–170

    Article  Google Scholar 

  • Arshak K, Mihov M, Arshak A, McDonagh D, Sutton D (2004) Novel dry-developed focused ion beam lithography scheme for nanostructure applications. Microelectron Eng 73–74:144–151

    Article  Google Scholar 

  • Bahns JT, Imre A, Vlasko-Vlasov VK, Pearson J, Hiller JM, Chen LH, Welp U (2007) Enhanced Raman scattering from focused surface plasmons. Appl Phys Lett 91:081104

    Article  Google Scholar 

  • Caturla M, Rubia TD, Marqués LA, Gilmer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B Condens Matter 54:16683–16695

    Article  Google Scholar 

  • Chih JL, Aref T, Bezryadin A (2006) Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17:3264–3267

    Article  Google Scholar 

  • Chiu NHL, Christopoulos TK (eds) (2012) Advances in immunoassay technology. InTech. pp 180. ISBN 978-953-51-0440-7, doi:10.5772/1967

    Google Scholar 

  • Coyne E, Zachariasse F (2008) A working method for prototyping solid immersion blazed-phase diffractive optics for near-infrared laser microscopy. J Micromech Microeng 18:045016 9pp

    Article  Google Scholar 

  • Ding X, Lim GC, Cheng CK, Butler DL, Shaw KC, Liu K et al (2008) Fabrication of a micro-size diamond tool using a focused ion beam. J Micromech Microeng 18:115013–115024

    Article  Google Scholar 

  • Ding X, Butler DL, Lim GC, Cheng CK, Shaw KC, Liu K, Fong WS, Zheng HY (2009) Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam. J Micromech Microeng 19:025005

    Article  Google Scholar 

  • Fang FZ, Chen L (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann Manuf Technol 49/1:17–20

    Article  Google Scholar 

  • Fang FZ, Chen YH, Zhang XD, Hu XT, Zhang GX (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann-Manuf Techn 60(1):527–530

    Google Scholar 

  • Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47(1):45–49

    Article  MathSciNet  Google Scholar 

  • Fang FZ, Wu H, Liu YC (2005) Modeling and investigation on machining mechanism of nano-cutting monocrystalline silicon. Int J Mach Tool Manuf 45:1681–1686

    Article  Google Scholar 

  • Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410

    Article  Google Scholar 

  • Fang FZ, Xu ZW, Hu XT (2009) Fabrication and configuration of carbon nanotube probes in atomic force microscopy. CIRP Ann Manuf Technol 58(1):455–458

    Article  Google Scholar 

  • Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  Google Scholar 

  • Frey L, Lehrer C, Ryssel H (2003) Nanoscale effects in focused ion beam processing. Appl Phys A Mater Sci Process 76:1017–1023

    Article  Google Scholar 

  • Fu YQ, Bryan NKA (2004) Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling. J Vac Sci Technol 22:1672–1678

    Article  Google Scholar 

  • Fu YQ, Liu Y, Zhou XL, Xu ZW, Fang FZ (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express, 18(4):3438–3443

    Article  Google Scholar 

  • Fu Y, Zhou X (2010) Plasmonic lenses: A review, Plasmonics 5(3):287–310

    Article  Google Scholar 

  • Fujii A, Suzuki H, Yanagi K (2011) Development of measurement standards for verifying functional performance of surface texture measuring instruments. J Phys Conf Ser 311:012009

    Article  Google Scholar 

  • Gao TT, Xu ZW, Fang FZ, Gao WL, Zhang Q, Xu X (2012) High performance surface-enhanced Raman scattering substrates of Si-based Au film developed by focused ion beam nanofabrication. Nanoscale Res Lett 7(1):399

    Article  Google Scholar 

  • Giannuzzi LA, Phifer D, Giannuzzi NJ, Capuano MJ (2007) Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. J Oral Maxillofac Surg 65:737–747

    Article  Google Scholar 

  • Gianola DS, Sedlmayr A, Mönig RC, Volkert A, Major RC, Cyrankowski E, Asif SAS, Warren OL, Kraft O (2011) In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Insrum 82:063901

    Article  Google Scholar 

  • Gierak J (2009) Focused ion beam technology and ultimate applications. Semicond Sci Technol 24:043001

    Article  Google Scholar 

  • Grandfield K, Engqvist H (2012) Focused ion beam in the study of biomaterials and biological matter. Adv Mater Sci Eng 2012:841961–841966

    Article  Google Scholar 

  • Hernandezramirez F, Rodriguez J, Casals O, Russinyol E, Vila A et al (2006) Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sens Actuators B 118(1–2):198–203

    Article  Google Scholar 

  • Joachim M, Giannuzzi LA, Kamino T, Joseph M (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32:400–407

    Article  Google Scholar 

  • Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19:749–754

    Article  Google Scholar 

  • Liang P, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong SM, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1:175

    Google Scholar 

  • Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL (2011) Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22:185308

    Article  Google Scholar 

  • Liu Y, Fu YQ, Zhou XL, Xu ZW, Fang FZ, Hu XT (2011) Experimental study of indirect phase tuning-based plasmonic structures for finely focusing. Plasmonics 6:227–233

    Article  Google Scholar 

  • Loeschner H, Fantner EJ, Korntner R, Platzgummer E, Stengl G, Zeininger M, Baglin JEE, Berger R, Brünger WH, Dietzel A, Baraton M-I, Merhari L (2002) Ion projection direct-structuring for nanotechnology applications. MRS Fall Meeting, Boston, Massachusetts

    Google Scholar 

  • Luo XG, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84(23):4780–4782

    Article  Google Scholar 

  • Matsui S (2006) Three-dimensional nanostructure fabrication by focused-ion-beam chemical-vapor- deposition. Microsc Microanal 12:130–131

    Article  Google Scholar 

  • Menard LD, Ramsey JM (2011) Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett 11:512–517

    Article  Google Scholar 

  • Michael F, Russo JR, Maazouz M, Giannuzzi LA, Chandler C, Utlaut M, Garrison BJ (2008) Gallium-induced milling of silicon: a computational investigation of focused ion beams. Microsc Microanal 14:315–320

    Article  Google Scholar 

  • Min Q, Santos MJL, Girotto EM, Brolo AG, Gordon R (2008) Localized Raman enhancement from a double-hole nanostructure in a metal film. Phys Chem Lett 112:15098–15101

    Article  Google Scholar 

  • Mitsuro K, Toshihiko I, Yoshitaka A, Koji S, Takeshi K, Noboru K, Hiroshi J (2007) Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam. J Polym Sci 45:677–683

    Article  Google Scholar 

  • Mori Y, Yamamura K, Sano Y (2000) The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication. Rev Sci Instrum 71(12):4620–4626

    Article  Google Scholar 

  • Nagase T, Gamo K, Kubota T, Mashiko S (2005) Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams. Microelectron Eng 78–79:253–259

    Article  Google Scholar 

  • Naik JP, Prewett PD, Das K, Raychaudhuri AK (2011) Instabilities in focused ion beam-patterned Au nanowires. Microelectron Eng 88:2840–2843

    Article  Google Scholar 

  • Norman HLC, Theodore KC (2012) Immunoassays using artificial nanopores. In: Chiu NHL (ed) Advances in immunoassay technology. InTech, Croatia, pp 125–140

    Google Scholar 

  • Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D, Zhang X (2011) Maskless Plasmonic Lithography at 22 nm Resolution. Scientific Reports, 1:175

    Article  Google Scholar 

  • Pastewka L, Salzer R, Graff A, Altmann F, Moseler M (2009) Surface amorphization, sputter rate, and intrinsic stresses of silicon during low energy Ga+ focused-ion beam milling. Nucl Instrum Methods Phys Res, Sect B 267:3072–3075

    Article  Google Scholar 

  • Picard YN, Adams DP, Vasile MJ (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27:59–69

    Article  Google Scholar 

  • Qian HX, Zhou W, Miao JM, Lim LEN, Zeng XR (2008) Fabrication of Si microstructures using focused ion beam implantation and reactive ion etching. J Micromech Microeng 18:035003

    Article  Google Scholar 

  • Reo K, Takayuki H, Kazuhiro K (2005) Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical-vapor-deposition. Nucl Instrum Methods Phys 232:362–366

    Article  Google Scholar 

  • Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300

    Article  Google Scholar 

  • Sarvesh KT, Neeraj S, Vishwas NK (2008) Correlation between ion beam parameters and physical characteristics of nanostructures fabricated by focused ion beam. Nucl Instrum Methods Phys Res 266:1468–1474

    Article  Google Scholar 

  • Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:R15–R34

    Article  Google Scholar 

  • Uram JD, Kevin K, Hunt AJ, Mayer M (2006) Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small 2:967–972

    Article  Google Scholar 

  • Utke I, Moshkalev S, Russell P (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, New York

    Google Scholar 

  • Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–399

    Article  Google Scholar 

  • Wang J, Huang L, Yuan L, Zhao LH, Feng XH, Zhang WW, Zhai LP, Zhu J (2011) Silver nanostructure arrays abundant in sub-5 nm gaps as highly Raman-enhancing substrates. Appl Surf Sci 258:3519–3523

    Article  Google Scholar 

  • Xia L, Wu W, Xu J, Hao Y, Wang YY (2006) 3D Nanohelix fabrication and 3D nanometer assembly by focused ion beam stress-introducing technique. In: 19th IEEE international conference on micro electro mechanical systems (MEMS 2006), pp 118–121. Istanbul, Turkey

    Google Scholar 

  • Xu ZW, Fang FZ, Fu YQ, Zhang SJ, Han T, Li JM (2009) Fabrication of micro/nano structures using focused Ion beam implantation and XeF2 gas assisted etching. J Micromech Microeng 19:054003 9pp

    Article  Google Scholar 

  • Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18:8025–8032

    Article  Google Scholar 

  • Xu ZW, Fang FZ, Gao HF, Zhu Y, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61:511–514

    Article  Google Scholar 

  • Yamamura K, Shimada S, Mori Y (2008) Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining. CIRP Ann Manuf Technol 59:567

    Article  Google Scholar 

  • Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori AN, Zettsu N (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann Manuf Technol 60:571–574

    Article  Google Scholar 

  • Yao N (2007) Focused ion beam systems basics and applications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

Download references

Acknowledgments

The book’s publication is supported by the National Natural Science Foundation of China (No. 90923038, 51275559, 50935001), National Basic Research Program of China (973 Program, Grant No.2011CB706700), Ministry of Industry and Information Technology (No. 2011ZX04014-071), National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA040405), and the “111” project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhou Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Fang, F., Xu, Z. (2013). State-of-the-Art for Nanomanufacturing Using Ion-Beam Technology. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics